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related Government procurement operation, the United States
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whatsoever, and the fact that the Government may have formulated,
furnished, or in any way supplied the said drawings, specifications,
or other data, is not to be regarded by implication or otherwise as
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INTRODUCTION

This Appendix contains the reprints published under JSEP in the time September 1992

to September 1993.

In addition to the 10 reprints contained herein, there are 6 papers already accepted

for publication during the next contract period, 11 papers submitted and 16 papers in

i preparation.
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JSEP REFEREED JOURNAL PAPERS 1
PUBLISHED SEPTEMBER 1992 TO SEPTEMBER 1993

1. M. A. Matin and P.H. Pathak, "An Asymptotic Closed-Form Representation for the I
Grounded Double-Layer Surface Green's Function," IEEE Transactions on Antennas
and Propagation, Vol. 40, No. 11, pp. 1357-1366, November 1992.

2. J. Ward and R.T. Compton, Jr., "High Throughput Slotted ALOHA Packet Radio
Networks with Adaptive Arrays," IEEE Trans. on Communications, Vol. 41, No. 3,
pp. 460-470, March 1993.

3. P.H. Pathak and R.J. Burkholder, "A Reciprocity Formulation for the EM Scattering
by an Obstacle Within a Large Open Cavity," IEEE Transactions on Microwave Theory
and Techniques, Vol. 41, No. 4, pp. 702-707, April 1993.

4. B.C. Ly, R.G. Rojas and P.H. Pathak, "EM Plane Wave Diffraction by a Planar I
Junction of Two Thin Material Half-Planes - Oblique Incidence," IEEE Transactions
on Antennas and Propagation, Vol. 41, No. 4, pp. 429-441, April 1993. I

5. N. Wang and L. Peters, Jr., "Scattering by Thin Wire Loaded with a Ferrite Ring,"
IEEE Transactions on Antennas and Propagation, Vol. 41, No. 5, pp. 694-697, May
1993.

6. H.C. Ly and R.G. Rojas, "Analysis of Diffraction by Material Discontinuities in Thin
Material Coated Planar Surfaces based on Maliuzhnets' Method," Radio Science, I
Vol. 28, pp. 281-297, May-June 1993.

7. J. Li and R.T. Compton, Jr., "Angle and Polarization Estimation in a Coherent Signal 3
Environment," IEEE Trans. on Aerospace and Electronic Systems, Vol. 29, No. 3,
pp. 706-716, July 1993.

8. G.A. Somers, "A Proof of the Woodward-Lawson Sampling Method for a Finite Linear

Array," Radio Science, pp. 481-485, July-August 1993.

9. J. Li and R.T. Compton, Jr., "Maximum Likelihood Angle Estimation for Signals with
Known Waveforms," IEEE Trans. on Signal Proc., Vol. 41, No. 9, pp. 2850-2862,
September 1993. 3

10. R.G. Rojas and M. Otero, "Scattering by a Resistive Strip Attached to an Impedance
Wedge," Journal of Electromagnetic Waves and Applications (JEWA), Vol. 7, No. 3,
pp. 373-402, 1993.
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JSEP RELATED REFEREED JOURNAL PAPERS
ACCEPTED FOR PUBLICATION

SEPTEMBER 1992 TO SEPTEMBER 1993

1. J.L. Blanchard, E.H. Newman and M.E. Peters, "Integral Equation Analysis of Artifi-
cial Media," IEEE Transactions on Antennas and Propagation.

2. L.M. Chou, R.G. Rojas and P.H. Pathak, "WH/GSMT Based Full-Wave Analysis of
Planar Transmission Lines Embedded in Multilayered Dielectric Substrates," IEEE
Trans. on Microwave Theory and Techniques.

3. R. Lee and T.T. Chia, "Analysis of Electromagnetic Scattering from a Cavity with a
Complex Termination by Means of a Hybrid Ray-FDTD Method," IEEE Transactions
on Antennas and Propagation.

4. U. Pekel and R. Lee, "An A Posteriori Error Reduction Scheme for the Three Di-
mensional Finite Element Solution of Maxwell's Equations," IEEE Trans. Microwave
Theory and Techniques.

5. G.A. Somers and P.H. Pathak, "Efficient Numerical and Closed Form Asymptotic
Representations of the Dyadic Aperture Green's Function for Material Coated Ground
Planes," Radio Science.

6. R. Torres and E.H. Newman, "Integral Equation Analysis of a Sheet Impedance Coated
Window Slot Antenna," IEEE Transactions on Antennas and Propagation.
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JSEP RELATED PAPERS 3
SUBMITTED FOR PUBLICATION

SEPTEMBER 1992 TO SEPTEMBER 1993

1. H.T. Anastassiu and P.H. Pathak, "High Frequency Analysis of Gaussian Beam Scat-
tering by a Two-Dimensional Parabolic Contour of Finite Width, " Radio Science.

2. T.T. Chia, R. Lee and R-C. Chou, "Comparison of Waveguide Fields Obtained via
SBR and GRE," IEEE Microwave and Guided Wave Letters. n

3. L.M. Chou and R.G. Rojas, "Dispersion and Lateral Leakage of Conductor Backed
Coplanar Waveguides with Layered Substrate and Finite-Extent Lateral Ground
Planes," IEEE Transactions on Microwave Theory and Techniques. l

4. J.O. Jevtic and R. Lee, "A Theoretical and Numerical Analysis of the Measured Equa-
tion of Invariance," IEEE Transactions on Antennas and Propagation. I

5. R. Lee and V. Chupongstimun, "A Partitioning Technique for the Finite Element
Solution of Electromagnetic Scattering from Electrically Large Dielectric Cylinders," 3
IEEE Transactions on Antennas and Propagation.

6. H.C. Ly and R.G. Rojas, "EM Plane Wave Diffraction by a Material Coated Perfectly
Conducting Half-Plane-Oblique Incidence," IEE Proceedings-H. I

7. P. Munk and P.H. Pathak, "EM Scattering by a Dielectric Filled Rectangular Antenna
Cavity Recessed in a Ground Plane and Backed with an Array of Loaded Dominant
Mode Waveguides," IEEE Transactions on Antennas and Propagation.

8. P. Munk and P.H. Pathak, "A Useful Approximate Analysis of the EM Scattering
by a Rectangular Antenna Cavity containing an Array of Dominant Mode Waveguide
Loaded Slots," Journal of EM Waves and Applications, (special issue on EM Scatter-
ing).

9. M.E. Peters and E.H. Newman, "Analysis of an Artificial Dielectric Composed of Small
Dielectric Spheres," IEEE Transactions on Antennas and Propagation.

10. W.P. Pinello, R. Lee and A.C. Cangellaris, "Finite Element Modeling of Electromag-
netic Wave Interactions with Periodic Structures," IEEE Trans. Microwave Theory I
and Techniques.

11. R.G. Rojas, "Integral Equations for the EM Scattering by Homogeneous/Inhomogepeous i
Two Dimensional Chiral Bodies," IEE Proceedings-H.
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JSEP RELATED PAPERS
IN PREPARATION FOR PUBLICATION

SEPTEMBER 1992 TO SEPTEMBER 1993

1. T.L. Barkdoll and R. Lee, "Application of the Measured Equation of Invariance to
Bodies of Revolution."

2. R.J. Burkholder and P.H. Pathak, "A Generalized Ray Expansion for Computing the
EM Fields Radiated by an Antenna in a Complex Environment."

3. T.T. Chia, R. Lee and R.J. Burkholder, "A Three-Dimensional Implementation of the
Hybrid Ray-FDTD Method for Modeling Electromagnetic Scattering from Electrically
Large Cavities."

4. Y.S. Choi-Grogan, R. Lee, K. Eswar and P. Sadayappan, "A Parallel Implementation
of a Partitioning Technique for the Finite Element Method."

5. M. Hsu, P.H. Pathak and C.W. Chuang, "Analysis of the Asymptotic HF EM Coupling
Between Sources Anywhere in the Vicinity of a Circular Cylinder."

6. J.O. Jevtic and R. Lee, "On the Choice of Metrons for the Measured Equation of
Invariance."

7. M.R. Kragalott and E.H. Newman, "Low Frequency Shielding of Electromagnetic
Waves."

8. M.F. Otero and R.G. Rojas, "Synthesis of the Frequency Response of an Inhomoge-
neous Resistive Strip."

9. P.H. Pathak, R.J. Burkholder and P. Rousseau, "On the Question of Causality Associ-
ated with the Inversion into Time Domain of Ray Fields that Pass Through Caustics."

10. P.H. Pathak, H.T. Chou and R.J. Burkholder, "Ray Like Gaussian Basis Functions for
Analyzing Propagation into and Scattering from Large Open Cavities with the GRE."

11. P.H. Pathak, A. Nagamune and R.G. Kouyoumjian, "An Analysis of Compact Range
Measurements."

12. U. Pekel and R. Lee, "A Three-Dimensional Finite Element Method for Electromag-
netic Scattering from Objects in an Unbounded Region."

13. R.G. Rojas, "Generalized Impedance/Resistive Boundary Conditions for a Planar Ho-
mogeneous Chiral Slab."

14. P. Rousseau and R.J. Burkholder, "A Hybrid Approach for Calculating the Scattering
from Obstacles within Large Open Cavities."
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15. P. Rousseau and P.H. Pathak, "A Time-Domain UTD for a Perfectly-Conducting Edge 3
in a Curved Screen."

16. G. Zogbi, R.J. Burkholder and P.H. Pathak, "An Efficient Planar Antenna Near and
Far Field Analysis using Gaussian Aperture Elements."
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JSEP RELATED CONFERENCES/ORAL PRESENTATIONS
SEPTEMBER 1992 TO SEPTEMBER 1993

1. SHORT COURSE: R.G. Rojas, "Prediction of Mounted Antenna's Radiation Pattern
using the GTD/UTD Approach," invited short course at PT. Industri Peswat Terbang
Nusantara (IPTN), Banbung, Indonesia, November 1992.

2. P.H. Pathak, "A Review of Some Asymptotic HF Methods with Applications to Elec-
tromagnetic Radiation and Scattering," invited IEEE AP-S distinguished lecture, IEEE
AP-S/MTT chapter in Atlanta, Georgia, January 27, 1993.

3. R. Lee and T.T. Chia, "A Hybrid Ray/FDTD Method for Computing Electromag-
netic Scattering from an Engine Cavity with a Complex Termination," 9th Annual
Review of Progress in Applied Computational Electromagnetics, Monterey, California,
March 1993.

4. Y.S. Choi-Grogan and R. Lee, "A Sequential and Parallel Implementation of a Parti-
tioning Finite Element Technique for Electromagnetic Scattering," International IEEE
AP-S Symposium and URSI Radio Science Meeting, Ann Arbor, Michigan, June 28-
July 2, 1993.

5. T.L. Barkdoll and R. Lee, "Finite Element Analysis of Bodies of Revolution using the
Measured Equation of Invariance," International IEEE AP-S Symposium and URSI
Radio Science Meeting, Ann Arbor, Michigan, June 28-July 2, 1993.

6. J. Jevtic and R. Lee, "Higher Order Divergenceless Edge Elements," International
IEEE AP-S Symposium and URSI Radio Science Meeting, Ann Arbor, Michigan, June
28-July 2, 1993.

7. J. Jevtic and R. Lee, "An Analysis of the Measured Equation of Invariance," Interna-
tional IEEE AP-S Symposium and URSI Radio Science Meeting, Ann Arbor, Michigan,
June 28-July 2, 1993.

8. M.F. Otero and R.G. Rojas, "Scattering and Radiation in the Presence of a Material
Lbaded Impedance Wedge," International IEEE AP-S Symposium and URSI Radio
Science Meeting, Ann Arbor, Michigan, June 28-Jdy 2, 1993.

9. H.T. Anastassiu and P.H. Pathak, "High Frequency Analysis of Gaussian Beam Scat-
tering by a Parabolic Surface Containing an Edge," International IEEE AP-S and
National URSI meeting in Ann Arbor, Michigan, June 28-July 2, 1993.

10. G.A. Somers and P.H. Pathak, "An Asymptotic Closed Form Aperture Green's Func-
tion with Applications to Radiation and Scattering by Slots in Material Coated Ground
Planes," International IEEE AP-S and National URSI meeting in Ann Arbor, Michi-
gan, June 28-July 2, 1993.
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11. R.J. Burkholder and P.H. Pathak, "A Generalized Ray Expansion for Computing the 3
EM Fields Radiated by an Antenna in a Complex Environment," International IEEE
AP-S and National URSI meeting in Ann Arbor, Michigan, June 28-July 2, 1993.

12. H.T. Anastassiu and P.H. Pathak, "A Simple Gaussian Beam Analysis of the Fields
Radiated by Two-Dimensional Paraboloid Reflector Antennas Illuminated by a Feed
Array," International IEEE AP-S and National URSI meeting in Ann Arbor, Michigan,
June 28-July 2, 1993.

13. P.R. Pathak, "EM Analysis of HF Scattering by and Coupling into Open Cavities," 3
invited lecture, 11th Annual IEEE Benjamin Franklin Symposium in Philadelphia,
Pennsylvania, May 1, 1993. 3

14. P.H. Pathak, "Some Recent Accomplishments and Future Directions in the Area of
High Frequency Techniques," invited lecture, XXIVth General Assembly of URSI,
Kyoto, JAPAN, August 25-September 3, 1993.

15. P.H. Pathak, "Asymptotic HF Techniques for EM Antenna and Scattering Analysis,"
invited lecture, Symposium on Mathematical Methods in Wave Scattering Theory,
Faculty of Science and Engineering, Chuo University, Tokyo, JAPAN, September 3,

1993. 3
The following conference paper was not included in the 1992 Annual Appendix.

1. S. Ozeki and R.G. Rojas, "Symmetry Analysis of Chiro-Dielectric Waveguides," Con- I
ference on Microwave Circuits and Devices, Inst. of Electronic, Information and Com-
munication Engineers, Tokyo, Japan, June 1992. 3
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U JSEP RELATED AWARDS, PH.D. DISSERTATIONS AND M.SC. THESES
SAwards: SEPTEMBER 1992 TO SEPTEMBER 1993

1. Dr. Rojas has received the 1993 Lumley Research Award from the College of Engineer-
ing at The Ohio State University. This award is based on the previous four years of
work.

2. H.T. Anastassiu received the second IEEE AP-S student prize awarded for the paper
entitled "A Simple Gaussian Beam Analysis of the Fields Radiated by Two Dimensional
Parabolic Reflector Antennas Illuminated by a Feed Array," (co-author, P.H. Pathak),
presented at the International IEEE AP-S and National URSI meeting in Ann Arbor,
Michigan, June 28-July 2, 1993.

Dissertations:

3 1. Ling-Miao Chou, "A Novel Hybrid Full-Wave Analysis Method for Planar Transmission
Lines Embedded in Multilayered Dielectrics - The WH/GSMT," Ph.D. dissertation,
Department of Electrical Engineering, The Ohio State University, Columbus, Ohio,
December 1992.

2. Gary A. Somers, "Efficient Numerical and Asymptotic Analyses of the Dyadic Aperture
Green's Function for e Grounded Material Slab and Its Application to Slot Arrays,"
Ph.D. dissertation, Department of Electrical Engineering, The Ohio State University,
Columbus, Ohio, March 1993.

Thesis:

1 1. H.T. Chou, "Development of Gaussian Ray Basis Elements for Efficient GRE Anal-
ysis of EM Backscatter from Open Cavities," M.Sc. thesis, Department of Electrical3 Engineering, The Ohio State University, Columbus, Ohio, September 1993.
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An Asymptotic Closed-Form Representation
for the Grounded Double-Layer Surface

Green's Function
M. A. Mauin, Mamber, =E and Prabhakar EL Patbak, Fellow, LEEE

Abssck-lIn this paper, -n efficient desd..hron asymeptotic ment method (MM) mutual impedance matrices. One of
vapsetatonfor the greande doubkle-yer (sul e ste-supaste se is the spectral domain approach (41, 61 (M1 which

Mr oo) sores (aW hoisonprlesented.ic dionwle) d Isvai has the advantage of using simple formulas for the spec-
Points anywhee Inside the superstraft or at the inadkes.u 7mw tral representation of the Green's function, but requires
asymptotic expressions ane develope via a slespest destant numerical integration over the entire spectral plane. OnI ml~4"uatioa of the original - -mrel~p interal representa- the other hand, for the spatial domain method [31, [51, 8]
don of the Green's 11snetd.., and the large parameter In this thne range of integration is restricted to the are of each
asymptotic developmsent is proportonmal to the lateral sepraton omain or basis function, but the Green's function is
between nsour P and ohsemvdan pons The asymptotic solstionU Is shown to agree with the mexe Green's budnd. for lateral expressed in terms of Sommerfeld-type integrals, which
distances eve as smail as a few tenths of the bee-space wave- must be numerically evaluated at each spatial point. It is
length, thus constitutin a very efficient too Or analzing printed dear that both methods require a fairly large amount of
dreults/antenams. Also, sinoe the asymptoti appruzianad'on computer time. Moreover, since both spectral and spatialIgives separate contuibutions pertaining to the diferent wave mernscnantr htoclaefse o cesphenomena, It thns prvides ph55lca bW t Int the Ad .nernscnantrsta silt atrfrices
bebavior, as shown threoug the exmipies. in sSeparation between subdiomains, the numerical inte-

grations become very inefficient when computing the MM
mutual coupling between widely separated basis functions.

1. INTRODUCTION Also, if the spatial size of the basis functions is small,
their transforms extend farther in the spectral domain,

TN _grounded double-layer (substrate-superstrate) thus adding inefficiency to the numerical integration whenIL cntiguration is of increasing interest in printed cir- the spectral domain approach is employed.
cuit/antenna technology. It has been demonstrated in [I] To overcome these limitations, we propose the use of
and [21 that, by properly choosing the layer thicknesses an asymptotic dlosed-form representation of the Green's
and material parameters, significant improvements can be function, which makes the mutual coupling computation
achieved in the performance of the printed antennas, in the spatial domain extremely efficient. Such an asymp-
including the reduction or elimination of surface waves, totic repreetto has already been obtained for theI which is a subject of primary concern when dealing with single-layer case [9HIll and was found to provide excel-
large arrays of printed elements. Also, a double-layer lent results eve for very small distances between source
structure allows for the separation of active circuitry and and observation points (usually down to a few tenths of
radiating patches in hybrid or monolithic integrated cir- the free-space wavelength). As an extension to the above
cuit technologies. These potential advantages lead to the work, the purpose of this paper is to dvlop an accurate
need for accurate, "full-wave" analysis of such stiuctures. asymptotic closed-form rexpresntation for the Green's

So far, the most commonly used approach to solve function of a prounded double layer planar structure, asI these problems (in single or double layers) has been the wen as to show some of its advantages.
solution of the corresponding electric field or mixed po- A further ettension to include multilayers does not
tential integral equation MEMI or MPIE), via the method appear strightforward. The development of the dosedIof moments [3H481. However, two different techniques form asymptotic result requires one to evaluate certain
have been applied to evaluate the elements of the mo-. derivatives of the integrand present in the Green's func-

tion integral; such an evaluation becomes complicated for
blamu.i cript ee-h OcWher 28, rWnvsn~epen*26,99 multilayers because in this case the integrarad itself be-I ThMds wok was nappoRow to part by Joint Servicneisaol Progra comes rather complicated. It is for this reason that an

loer Contract N000144&SK4004 and Mie OWi Stw. Univertiy Re- asymptotic treatment of the more general, prounded mul-
mrhFoudation
KA. Marin a warendy wMt np~enira de Ras~drecond-he 283 tilayer Green's function has not been attempted here;

Madrid Spuin he was vhh the Ohio Stae University, Elecuosdmce only the special double layer case, which is of sufficient.
LabH.ratory, itwith T OHi 4321. Uiest ssda Lo-practical interest, is considered in this paper.

rabosy, Columbus, OH 4312 71Tis paper is organized as folows. Section 11 presents
WME Lag Ntinbe 92090. the formulation of the substrate-superitrate Green's func-

£I018-926X/92S3AX 0 1992 IEEEE



am ntohAMACN ON ANMOMANU M M V AOA1IOh, VOL 4P NO. MN 33 3
tic. in W of omeel-yeintegrals, for a horhanom *.S
lal JHrtsian d&Pole embdde in the .pentrat Section
M discusses the number and location of the relevant
poe of the structure 1he asymptotic evaluation of the
original Sommerfeld integrals is marid out in Section IV.
Finally, Section V presents numerical results showing theL
accuracy of the new asymptotic representation. It will be
shown how the asmttcformulas provide not only -A o
computational efficiency but also physical insight into the
field behavior. An e*4"' time dependence for the fields
and sources is assumed and suppressed in the folowing
anabss

IL FORMUL•TIOtN
Consider an infinitesimal -directed electric dipole at •*• io•Wsd dadbe4W p Pdwafdtw wi on=, S (a bbmm-

(z',y',z') embedded in the superstrate of a planar t
grounded double-layer configuration, as shown in Fig. 1.
We are interested in calculating the 2- and direction and
electric fields at any observation point (x, y, z) in the k2 .
superstrate induding the interhfces (0 sz,z' Is d2).'hese D.- -- ±tj k cot[kl. d,] (10)
fields can be written as follows: A/ Al

-1 a2 ] (11)
E.- 2• 1 + ([ U- WI) (1)--3&W2 8. 1 Z > Z'

-1 f a2  ]} 1 - -eJt'(-) ( 1 z <z' (12)

E .- - I -a-2 [U - W (2) e- -1 p3 - (123)

where being 3
U-[', F(f)JVo( p) df (3) ko," Vo- ýO - ; kj. • ', -C2;
W F(f)J(o p)d( k2, - j- (14) 3
W jorFW"( )Jo( p•)d (4) It is noted that to be consistent with the Sommerfeld

radiation condition the choice of the branch in (14) must4o being the zeroth-order Bessel fucto be • " tnt

p- m (x --x1) 2 +J-(y--yr)2  (5) Izn•0 5 )•OT <0O. (15)i

the lateral separation between source and field points. Fmnally, the denominator in (6) is given by
The wavenu xoers in media 1 and 2 are defined as k,- (_z) 2  k0o.k1. ]f1_-

and k2 - k.,/rZqi, respectively, where k, is D j o~~ 1
the wavenumber'of the semiinfinite medium above the 2 )
superstrate (this semininfinite region is usually free-space), k kjI
and rAt,,, e are the relative permeability and permittivity + -Lj-O J cot [k.. d,]) (1 + e-2 Jkzd 4 ). (16)
referred to that medium so that A - gop• and e, - toe. A6 A,
The functions Fuw in(3)and(4)canbedeterminedby Similarly, FWcanbewrittenas
solving the boundary-value problem in the seta do- k.T•+T m p- "
main, yielding (for 0 :g z,z' Is dF Fw(f) . T I + 22 3

Fv( -76* f I +T' fD.

F"(C) (, T, (6) Tr'p + TIA + ";p,3 (17)

where the T' terms are given by. with iJ
r- DA(1 + a.) - D0t(l - a,)e--2ji42 (7) Ti- D,*(1 + a.) - D;,(I - a.,)e-'Aud: (18)

T"I -DI1I + a, + (1 - a.)e-20h -2 , -}) (8) T2' -D;,[-(1 + g.) + (1 - .)1 e-2J1,.(,-2)] (19) 3
T"- {D.- + D.+e--21k")(1 - a.)-e6 .a d2 (9) rT - [D:, - D;,e-2ik2,"](1 - a,.)e-,'Jd2 (20) 1
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and cate the first TE and 7M proper and/or impropersufcI~t k2s k15  wave poles will be outlined.
L t -±- tan[kl,d1 J (21)AZT fD

42 71 ZwofD

ko~leqAs mentioned before, a new TB surface wave pole will
k2m1- (22) always appear initially at C - ko on the proper Rieminann

sheet, so the following condition must be metI The denominator D. in (17) i now D,( - ke)-O0 (24)

D.. (L2 2, jk2 *~tan [k,, d, (1 ~C2Jkuai) 'which can be written using(16) as

S 2) CO C1  J k2 ./92
+ ( ko. *jitnk ,d j+e-2ikui). (23) Ar2-

* to CJf1ankid1}( r)___
The above expressions for the fields have been checked to - ~ o odF 11(5
reduce to the single-layer case when A21 C2 tend to 1&0, co14
and/or d2 tends to zero. Also, the denominators (16) and where ?'I ' fig $; Fn2 'L,2 Ar2. Defimngin a away simi-I(23) agree with those given in [21 except for amultiplica- lar to [12Lthe parametersL, _ ko djn7 1, L 2 -ko d2tive factor. inFT1, (25) can be expressed more compactly as

M. POLE SmRUCIRu 
-n7 1tn( ct(,-(6

The zeros of D~, D.in (6) and (17) constitute the poles A,2 51( 2) - o(L)1(6
Of the composite (double) layer. Their number and loca-I tion depend on the layer thickesses and material con- It is noted that this equation was already given by Jackson
stants, as well as the wavenumber ko. Restricting our and Alexopoulos [1, eq. (37)1, and it represents the condi-
attention to the lossless case, it is well known that D,, D,, tion for any 7E surface wave mode to turn on. For

p.exhibit acertain number of zeros on the real axis of the example, for agiven C'2114 2, d2 such that L2 <v/Z (26)
C-plane, in the interval (k0, max(k1 , k2)1 These poles de- will be satisfed at infinite points each one for a certain
scribe the surface waves guided by the stucture and L, such that Nff< Ljz(2N + Orwith (N -0, 1, Z~..
therefore appear on the proper Riemmanni sheet (con- 11 we plot the condition (26) in a two-dimensional L1L2Isistent with the radiation condition) of the I-plane, as plane for a given set of e, jui we get a plot lie in Fig.
defined in (15). But there are also poles on the improper 2(a). In the regions between two consecutive curves, the
Riemmnann sheet of the f-plane, known as leaky wave number of surface waves is constanit. However, the numn-I poles. Although there are in general an infinite number of ber of improper surface wave poles (lwp in Fig. 2) is not
them [12], it was found in (10] and [13] for the single-layer As discussed before, two leaky wave poles move onto the
case that the Inclusion of only a particular set of these improper real axis when the point defined by (LI, L2) in
poles produced a significant improvement in the asymp- Fig 2(a) move close enough to the curve defining the
totic solution, for nearby source and observation points on order of the next region. As L, or L2 increases, one of
the surface of the slab. This set of pcoA'i is located on the these poles begins moving towards the branch cut and
real aids of the improper Riemmann of the C-plane finally "Jumps" onto the proper Raemmanin sheet, thusI for the lossless case, and therefore they will be referred to constituting a new surface wave pole.
as improper surface wave poles. It was also found that Note in Fi% 2(a) that, if 9,2 - 042 - (no second layer
proper and improper surface wave poles are closet, !~e- present), L2 - 0 and the L1, L2 plane reduces to the L,I lated. In fact, surface wave poles (except for the first TM axis, yielding the results already reported in (12] for the
surface wave pole, which as always above cutoff) are single-layer case. It is also noted that the carved segments
oiginally improper poles that move towards the branch between dots in Fg 2 can be convex: or concave, depend-Icut at k, along the real axids of the improper Riemmann ing on the particular values of .,.j, gAW, in (26).

sheet as the la~~~~~~~~yer thickness increases, and finally "Jump In most practical cniuainteei nyoepoe
into the proper plane, then moving away from ka along or imprope TB surface wave pole, and it can be easily
the proper real axis In the same way, improper surface found as follows. The pole will be located on the real axidsIwave poles are originally improper complex (or leaky of W;. proper (improper) sheet if the left-hand side of (26)
wave) poles that move onto the improper real L'. Xb ~~rIs greater (salialer) than the right-hand side. In either
the appropriate conditions are met. In this section, we will case, a Newton-Raphson searching procedure imple-
investigate the number of TB and TM poles on the real mented in (16) with 0 .99korR2 (for a swp) or Cai k*Iaxes of both, the proper and improper sheet (CIplane) for (for a lwp) as initial value has been found to provide the
a general double laye structure, as a function of its actual location of the pole in only a few iterations. Note

cnttutive parameters. Also, a simple procedure to lo- that the subscript is on Ji. above refers to the value of



IND I1RASIACMO oN 0ANI ASMAN FROPMAAIO VOL 4 NM IL U, N ý ME

&we Leimproper surface wave palm es, ~pecdýý.W m LI >
v/2.D. prsents a inguetat djC2l- e-w/2. In

WR this case special care must be taken with
0 the starting value of the searching akgorthm in both

Riemmann sheets, because the searching procedure can-

I
not "cros" a singularity. These situation can be easily
handled by plotting D. along both (proper and improper)
real Ctaxes to determine appropriate startinig values.,

() IV. Asywrrrc EVALUATnON OF Thm
SOMM tM I AM.S

I Conventional numerical evaluation of the Sommerfeld-
Io•. *a" 42 kv Itype integrals (3), (4) presents two main difficulties. First,

the integrands exhibt a certain number of poles that have
to be extracted in order to obtain a relatively smooth

Sfunction suitable for numerical integration. Second the
oscillatory, slowly decaying behavior of the Bessel func-
tion results in a poor convergence of the integrals, partic-
uaarly when the latera separation between source and I
observation points is large in terms of the wavelength.

Mb) To overcome these limitations, asymptotic dosed-form
Fig. I Number of proper (wp) and •poper O(p) sura wave poles expreSsions for U and W in (3) and (4) will be developed
for pen materia (4,,, j4,,). as a funcion of Iae thimenes (a) TE in this section. To carry out the asymptotic evaluation we
case, sd M)TM ca (L, - kod,V/,,p#, - 1, L2 "kod 2 /2, 2, ,- I)- fffst write integrals (3) and (4), due to the oddness of FvUw
Mw n~umber of tip indicaedwtntebactsae.aual- with respect to ~,as:
roer surftce wave poles that can c a , each reion.

I I
the initial guess for the location (in the j plane) of the U-s . f ) O(,)(g)df (28)

proper surface wave pole, and likewise the subscript il on 1 I
•, refers to the initial value of f pertaining to the W-"2 IFw(f)H°I)(pf)d, (29)
improper surface wave pole.

B. Zeros of D,, where C, is the Sommerfeld path, as shown in Fig. 3. This I
Similar considerations to those discussed in the previ- path can be deformed to give the sum of the enclosed

ous case lead now to the following condition, for a TM residues plus the integral around the branch cut (contour

pole to arise on the proper Riemmann sheet Ca in Fig.3) I
tan(L 2) - tan(L 1) (27) U- -1 2r j nu~j)H?' -'" -

lanI

We can again plot the condition (27) in an L,, L 2 plane, + JFU(e)H2)(pe)d, (30)
as we did for D,. The result for a given set of e,,, i,, is Co (

shown in Fig. 2(b). The same general considerations dis- 1
cussed above for D, are applicable here. It is also seen W- -- 2 jRw(&)HP)(p,)
that, for L 2 -0 (single layer case), the plane in Fig. 2(a)2
reduces to the L, axis with the result already given in
1121 +]JFw(: (f)(g)de. (31)

In most practical double layer structures, there is only

one TM surface wave pole, although two leaky wave poles Her, Ru-w are the residues of FU'w at f - & (proper
may also exst on the mnproper real (-=L This situation surface wave poles), and can be calculated as follows:
corresponds to the first region in Fig. 2(b). The surface
wave pole can be found by implementing a Newton- NV(f)
Raphson search procedure in (23) with &, - 0.99ko 0 " RU(e&) - lim (j - &•)FFu(-C) (32)2 D(, &I
as a starting value. The improper surface wave poles (if
any) can be located in a similar manner, now starting the Nw(&)
search at both f, .- ko and J12 -0.99koinR. The fl, Rw( &) " lim(- J,)Fw(C) ,

and J12 above represent the values of the initial guesses !
for the location in the f plane of the first and second (33) U
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leuaen Uwg e a

seem MTV

FI. O1aI Samunid amlw (C5) and the dedmam to SW
the sm of the =dkwd naidus is tle kaqpi wmmd the WIand aMt-In

a( er.,Hem 9 + jj.

where NU-w represent the numerators of Fu and Fw in IA

(6) and (17) and D,, D,, stand for the singular and non- 7./
singular denominators in (17). The minus sign of the
residues in (30) and (31) comes from clockwise integration
around the poles. M

The above result, (30), (31), allows for the interpreta-
tion of the solution in terms of two contributions: a
discrete number of surface waves, whose strengths are
given by the corresponding residues at the poles, plus a
continuous spectrum of waves, represented by the integral \.A!_
around the branch cut. The purpose of the asymptotic
evaluation is to obtain the dominant terms in the latter.

With the above view in mind, the following changes of
variable can be used [9)-[11]: (C)

Fig. 4. Orinal an eepe d em (SDP) - eft ontersdan in &eC
( (a) •ame; (b) v0pme; and (C) Salae. "Me lJeis Of Pmp (s) andT-- yo-)2 (34) kPra),u , wae p -ales als dOWn.

'1"

COST.- (35) where Ca is the contour shown in FA 2, one gets70- 1

I.- f fF[k.(1 -jS2 )]Hoj2)[kop( -js2)](-2jkos) ds
sin y - I - is2. (36) '1(39)

The first one transforms the integral around the branch where 170 is the resulting contour of integration in the
cut into a real-axis integral in the " plane. The second s-plane, as shown in Fig. 4(c). Now, if ko p is assumed to
performs te angular spectrum mappig, and the third be large, we can use the large-argument form of the
tandorms the steepest descent path (SDP) in the y plane Hankel function in (39), yielding
onto the real axds of the s-plane. The three planes, as well 1 2 i
as the paths of integration and the location of proper and Ij - -- ew/14)e-kt [ G(s)e-a,'2 dL (40)

improper surface wave poles (loeless cae) are sown in Vrp 04
Fig. 4. where

Since the above transformations have been discumed mi n -j(
mre detal in [9H111,itwill thus suffice for our purposes 1 -)
to consider the direct t nrmation from the C-Plane to By defoing the original contour FJ into rFDP, eXact-
the ,-plane: ing the singities and a oIImatin the resulting rep-

( lr function by the fmit two nonvanishig terms of its
(37) Taylor series expansion wound s - 0 [141[15, one gets

the following result-
Introducing the above transformation in a general inte- ./4) - r R(b,) ,
pal of the form 2 - F(jkpb?)]

1 f (38) 1 2 G(0) + -"(b) (42)

)H?) pj df 38)2kO p F2
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where Md,) are the residues of (s) at s - b (siqul- m n materials will not be used througout these 3
ties in the s-plane), G(O) a the second-order derivative mmles, it must be mentiond that there isn esential
of (41) evaluated at s-0 and A(z) is the transition difference in the treatment of the magnetic materal and
function (as defined in [111). the dielectric material from a purely numerical point of

It can be easily shown that the residues of G(s) at view, and the asymptotic solution is eqally valid for both.
s - bi are related to those of F( ) at J - i by In the examples shown below, one TM surface wave

R( )pole (plus two improper surfa wave poles when nces-
R(b4) " R (43) mazy) and one TE proper or improper surface wave pole

7k.e, have been included in the asymptotic solution. Thus, Fig.
where R() s defined in (32) ad (33), d 5 shows a comparison between the numerical evaluation

of the exact W (4) and its asymptotic apprmoimation[(31)
b,- OA'/Vi/lk0 - 1 (44a) nd (42)A venus lateral separation between source and 11

observation points. The "exact" value of the function U
where the principal branch of the above square root and W is always calculated by a numerical (Gaussian)
(Re (b,) > 0) corresponds to surface wave poles, and the integration of (3) and (4), once the limiting behavior and I
other branch to leaky wave poles. snuati of the integrand have been extracted [111 In

It can be seen that the solution given in (42) is in a very this case, the source and observation points are located on
amenable format, involving only simple algebraic opera- the interface between the two dielectric layers. As can be
tions and the well-known transition function F, which seen, the asymptotic closed-form expression remains valid
contains simple Fresnel integrals in the lossless case [11]. for lateral distances as small as two tenths of the free-space
Also, the summations in (42) involve only one or two poles wavelength Ao. Also, Table I shows a CPU time compari-
in most practical cases (which typically involve only mod- son between the calculation based on the numerical inte- I
erately thin layers). The evaluation of the second deriva- gration procedure and the asymptotic dosed-form expres-
tive of (41) at s - 0 is also simplified by noting that: sions. It is apparent that the use of the dosed-form result

G'($ -0) - -4jF'(s- 0) (45) in conjunction with any spatial-domain formulation will
result in a substantial savings of computer time. It must

where F is Fu- w(Q) in (6) or (17) evaluated at- kO(Q - also be mentioned that, in all the cases studied here, the
js2). Although somewhat cumbersome due to the rela- accuracy of the asymptotic approximation for U is at least
tively functions involved, the evaluation of F'(s - 0) in as good as it is for W.
(45) is straightforward, and the results for three different Another example is shown in FW,. 6 in which a thin, low
situations (source and observation points both along the dielectric constant slab is placed on top of a moderately
fast or second interface and along different interfaces) thick, high dielectric constant layer. In this case, the I
are given in Appendix A. source and observation points are along different inter-

It must be mentioned at this point that a complex leaky faces. Again, the asymptotic solution remains valid for
wave pole existing on the improper sheet of the original lateral distances of the order of 0.4A, although probably 3
f-plane may contribute to the solution if it is captured in 0.2A0 could be used for most practical purposes. In this
the path deformation (17' into Fje), or it may still influ- case, there is no singularity when p -+ 0, because the
ence the solution if it appears close enough to the saddle source and observation points are at least separated by
point In these cases, the asymptotic solution including the thickness of the second (superstrate) layer. I
only the real f-axis proper and improper surface wave One more representative case is shown in Fig. 7, where
poles will be seen to lose accuracy in the neighborhood of a thick layer is now placed on top of a thin one, both with
the source. However, this can be regarded as a second- high dielectric constants. Source and observation points I
order effect, since the complex leaky wave poles cannot are here along the dielectric-air interface. As can be
appear arbitrarily dose to the saddle point, while real-axis seen, the asymptotic solution can be used in this case
poles do. Nevertheless, these situations are rarely found almost down to one tenth of the free-space wavelength.
in practice. In general it can be said that the asymptotic dosed-form

Finally, when the observation point is very close to the expressions for U and W can be used down to a few tenths
source, the asymptotic solution will fail, and a numerical of the free-space wavelength, for source and observation
integration procedure (see e.g., [liD or alternative inte- points along the same or different interfaces. This also I
gral representations [161 must be used. applies if source and/or observation points are embedded

somewhere inside the layers. However, as it was men-
V. NumwucAL. suLTs AmD Co~~mo•s tioned before, in those particular situations in which a

In this section we will first examine the accuracy of the complex leaky wave pole contributes significantly to the
asymptotic approximation in the three cases considered in asymptotic solution, the above expressions for U and W
the Appendix. The examples have been selected to show converge at large lateral distances from the source, of the
the validity of the dosed-form expressions for different order of one free-space wavelength. However, this restric- I
combinations of low and high dielectric constants, as well tion in the asymptotic solution can be eliminated even in
as thin and thick dielectric slabs (ossess case). Although the latter case if the effect of such complex leaky wave
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__nxape,__iskowta a TM___ _______ wave__ c_ _ be

maes the sufc aee10 aol osbewe

Fi 5 ampr-------t---c ad~ ym~dcaprn g 7.e subsrt isd verythin, Whereas the us of bah magnti

0 ~second layer allows for much thicker substrates.Mm
W~~~~ats can be easily shown by plotting thereiu(3)a

2 \V1 ~~~the fihst TM surface wave pole. This rsdealal
represents the "strength" with which the 7Msurface wave

_____ ____ _____ is excted, and therefore will vanish when teappropriate

- _____EXACT conditions are met. Fig. 8 shows an example in which the
absolute value of the TM residue (case 1 of the Appendix)

ASTUP?@IIC is plotted versus superstrate thickness, for both a mag-
LATERAL ~neti and a non-magnetic: superstrate. Ms can be seen, the

LTRLDISTANCE (P/k). surface wave residue for the magnetic superstratel ex-
Fig. 6. ICbspauson beween mmt and asymptotic W Inanother zuin- hibits at zero at d2 -O.02 A,, while in the nonmagnetic
pie. landin Case, source and observaton points awe atloat different case there is no such phenomena. It is noted that bothIinterfaces. residues reduce to the single-layer case when d2 -+ 0. It

must also be mentioned that, for the nonmagnetic super-
TABLE I strate, the next (FE) sturac wave arises at d2- o.033A,

CPUJ Tbs (4 mCOms IN A VAX 8550) To CiAwLctAm Bum while for the magnetic case this occur at d2 - O.07AO.
VAID IAT EXEAMLE OFT~ta PROW 51 ORI24 Also. by using the asymptotic dosed-form expressions,

Lateal CU d=CPU ime we can easily plot the fields produced by an elemientary
distnet watrici W F H61 source. Let us imagine an i-directed elementary electricI(p/A@) Integration -lsdo dipole in a double-layer struicture. If the observtion point

0 44 moves around the source in a circumference of radius R
1.0 145 4 (in the plane of theusource), using (1) and (2) we can

2.0 176 4 calculate the E,, and EP, "planar" radiation patterns, as
a tunctionOf theaspmctan*l # with the f-axis. Fig. 9

poles is inoprtdinto the solution in a manner siil diow the results for a structure that supports only one
totatdneororathedipp:sufc a TM surface wave, which produces a lobe of E,, in theIOn thadne forthe oer sur - fac de n wav p oles. e endflre direction (note that in free space such a lobe will

Onl adathge ofhe hand asymputaticnoluetioncy Itaso appear in the broadside direction). However, when an-
onycl adinsgtagetof ane asmpoic solutiorgvn. It alsop~O1 other (now TE) surface wave is present, a second lobeI physical insighat vinto Wfih the dil eaiofr, n givin spart appears around # - 90r, as shown in Fig. 10. In these

C~nlibbofs tat ivily zgahgt te dffeent-- eph exmuples the derivatives in (1) and (2) were evaluated
nomena. Thus, the interference between the space wavenueialbtfrRJW nog w renyth
and the pole wave transition effects is contained in (42),nueialbtfrRageeohtow reoyte
whereas the effect of proper surface wav poles is explic- 'Rta 1W 09 mm bween two vs dopaks in th&
idly represented by the residue terms in (30) and (31). As parmt Ceas e ar eatdan [71 Fa& 8
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I0

SUPEESTRATC THICKNCSS teal..)

Re. & Ree at the TM surfae waen pole for a mapd (*,, -10,
4,2 - 1) and a non..mapethc (4,2 - 10. 6,, M-1) Masnpeatr, Vesn
speriaste dticlame. £

S&g 10. NoeMnalzd RUrfac fields prdcdby an eleenternry electric
&U 1P 0.014dipole at an observation point (R, 4) veisa (Rt - SA*). In tli. cme

~ lMPboth aTE mWdaTM mW aft Cewae

* E,,..........

-0.0I

91% Fig. 11. Magnitude of the E.. field produced by an elementary electric
dipole atR- 5A. #- 0 asafunction of botadustrate perneaoility

Fig 9. Nommalized surface field. E. E, produced by an elementary and thichue na h solid line sbows the louis of the combinatiam p.,2, d2
electric dipole at a distnce it, vermu A) ntu aol hteiiaetefrtT ufc aeC, )

In conclusion, an asymptotic dlosed-form approximnation
surface waves (first terms in (30) and (31)1 need to be for the Green's function of a horizontal electric dipole in
considered. It can be done analytically, yielding sin2 or a grounded double-layer configuration has been derived.
co2 0 type patterns corresponding to the TE or TM This representation as valid for source and observation
surface wave poles, respectively, points anywhere in the superstrate (including interfaces),

Finally, since the calculation of the field produced by an although it can be easily extended to cases in which
elementary source is extremely efficient in terms of coin- source and/or observation points are in the substrate.
puter time, it allows for parametric studies, like the one The large parameter in the asymptotic approximation is
shown in Fig. 11. In this example, the E,, field produced the lateral separation between source and observationI
by an elementary source at R - SA9, 0 - 0 is plotted as a points, and the asymptotic solution has been cheked to

function of both the relative permeability and thickness of agree with the exact Green's function for lateral separa-
the superstrate. The line shown in the figure represents tion down to a few tenths of the free-space wavelength.
the locus Of the combinations (A,2, d2) that eliminate the Also, the Usefulness Of the asymptotc exressions has
first TM surfac wave. As can be seen, the "cut" of the been demonstrated with illustrative examples. It is noted
above figure defined by AL, - 10 is the one already shown that the present asymptotic procedure can, in principle, be
in Fig. 8. generalized to is layers; however, the ns layer case would



MARIPN AND PA7A1C a.OUD.FORM ASYwoTC REPRESENTATION OF GREENS ruc-noN 136s

require one to perform certain differentiations in the s Note that D*, D. do not depend on the position of source
plane (as in the Appendix for n - 2 case), which can and/or observation point, so their values at f - ka and
become far more cumbersome than for the n - 2 case, if their derivatives at s - 0 do aot need to be changed in
done analytically. At present, we are looking at efficient the cases described below.
numerical procedures to overcome this difficult problem Case 1. Source and Observtion Pobm Both Along the
in the generalization to n layers. It is believed that these Fim Interface (z' - o, z - o):
asymptotic losed-form expressions can greatly improve
the efficiency of the present methods of analyzing printed 4 )1- 1

crcuits/antennas, as well as contribute to a better under- NV(s - 0) - ko;2-e)( 4 ) (A.7a)
standing of the related phenomena. V2

APPENDIX NW'(s -0) - -koFe•(/" .lV•'•T(1 - e-2jkS•'V6: )
DERIVATIVES IN THE S-PLAE (A.ro)

The calculation of derivatives in the s-plane can be
done in the general case as follows. We first write Fu.- in N.'( -0) - -jk 0oCeA(1"/dy e2 tan (kod, ,ET)
(6) and (17) using (37) as at

NU(s)N() (A.1) .11[I_

FW o( - sl] N:S) N'(S)(A2) Case 2 Souce and Observadon Point Along DifferentFW[ e- k0(1 _js 2)] = M?'(s) NW'(s) C o, n o o >y.
D.(s) D,(s) Interfcss (z' - o, z - d):

where D,(e),D.,() are given in (16) and (23A, and N'(s - 0) - 0 (A.Sa)
Nu, Nw,, are simply found by comparing (A.l) and (A.2)
with (6) and (17). Now the problem has been reduced to NW(' s - 0) - 0 (A.8b)
compute derivatives of the form: 4

F a N(s) N'(s) D(s) - N(s)D'(s) Nr,?'(s - 0) - kor2e•'/ta

Fs D(s) D2(s)
(A-3) .(kodj TT )2e-ikedz•T (A.8c)

Since we are only interested in the derivatives at s - 0
(i.e., f - ko), the above formula simplified to: Case 3. Source and Obsvation Points Both Along the

F'(s - 0) Second Interface (z' - d2, z - d4):

N'(s - 0) .D(f - ko) - N(f - ko) .D'(s - 0) NV'(s - 0) - 0 (A.9a)
(A.4) NW'(s -0) -0 (A.9b)

Using the formulas in Section II, Nu, Nw,,, and D),.. at N:'(s - 0) - -k i/2 )J{nW/ WTI1 -

j - k0 are easily found. The only remaining quantities to 6 C0*- (I

evaluate in (A.4) are the first derivatives of N', N,., and e
D,,m at s - 0. These are given by: +in- - tan (kodinI•-T)

D,(s - 0) - (-k 0 •e)(w',)) 41
j Fn ,'r: =1 -A2 + e-2jk.', r-• ) (A.9c)

["I (tan (kodj 1,~ ) ~n 1-( ~ied2

- -2jkS.2 '7=) + 1 + e -2i 'f2 1k AcaOWzLEDMENrr
e 1The authors gratefully acknowledge Sina Barkeshli for
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High Throughput Slotted ALOHA Packet
Radio Networks with Adaptive Arrays

James Ward, Member, IEEE, and R. Ted Compton, Jr.

Abstract-We consider the use of a multiple beam 4Aqwve reception of more than one packet in the same slot [101,
army (MBAA) in a packet radio system. In a multiple beam [11]. However, spread spectrum systems require much wider
adaptive array, a given set of antenna elements Is used to form bandwidths than conventional ALOHA systems for the same
several antenna patterns slmultaneomsy. When used in a packet
radio system, an MBAA can successfully received two or more information rate.
overlapping packets at the same time. Each beam captures a Recently, Ghez et aL [12], [13] proposed a general "Mul-
different packet by automatically pointing its pattern toward tipacket ALOHA" model in which multiple packets may be
one packet while mulling other contending packets. Ths paper successful in each slot. Their work mainly addresses the
describes how an MBAA can be Integrated into a single-bop
slotted ALOHA packet radio system and analyzes the rnulting stability and optimal control of a general multiple capture
throughput for both finite and infinite user populations. system, with the emphasis on spread-spectrum slotted ALOHA

systems.

.INTRoDucTION In this paper we present a new method for achieving
multiple captures in a slot: the use of an adaptive array [14] as

N an ALOHA packet radio system, radio terminals transmit the receiving antenna at a packet radio terminal. We propose
packets to each other in a common channel. In the original a system where the signals from a set of array elements

ALOHA system, packet collisions limit channel throughput to are combined with more than one set of weights to form
18% for unslotted ALOHA and 36% for slotted ALOHA [1]. several simultaneous receiving patterns. We call such an array
This low throughput has motivated much research on collision a multiple-beam adaptive array (MBAA). Each beam has its
resolution algorithms and better protocols to obtain higher maximum response in the direction of one of the arriving
throughputs while still permitting random access [2], (3]. packets and has nulls on the other packets. Such an MBAA

Underlying most work on improved protocols is the as- allows a terminal to receive several packets successfully in
sumption that a packet terminal can receive only one packet each slot. Moreover, it provides this capability without any
successfully at a time. It is assumed that when two or more need for additional bandwidth as in a spread spectrum system.
packets collide, none is received correctly. In some systems In a previous paper [15], the authors showed how a single-
a capture effect [4]-[8] may allow one packet to be received beam adaptive array could be used in a slotted ALOHA system
correctly during a collision. However, even with capture, it to receive one packet correctly in the presence of interfering
is still usually assumed that a terminal can receive only one packets. The.performance improvement obtained with a single
packet at a time. beam adaptive array is similar to that obtained with Carrier

The main exception to this assumption occurs in spread Sense Multiple access (CSMA) [16]. However, the adaptive
spectrum systems. Spread spectrum packet systems allow array technique has the advantage over CSMA that it does not

Paper approved by the Editor for Mobile Communications of the IEEE require all terminals in the network be able to hear each other.
Communications Society. Manuscript received July 13, 1990; revised April With an MBAA, however, a much more substantial im-
17, 1991.

ibis work was suppoted in pan by the U.S. Army Research Oace, provement can be obtained than with a single-beam adaptive
Research Tangile Park, NC, and by the Office of Naval Resarck, Arlington, array. In this paper, we describe how an MBAA can be used
VA, under cmotracs DAALMO3-K-0073 and N0001449-J-1007 with The in a slotted packet system, and we evaluate the performance
Ohio State University Research Foundation. Columbus, OH. This paper was
presented in par at the 25th Annual Asilomar Conference on Signls, Syrums, of a single-hop ALOHA network with an MBAA. We obtain
and Computers, Pacific Grove, CA, November 1991. results for a finite population system by using a Markov chain

J. Word was withe ElectraSconce Laboratory, The Ohio State University, model for the system backlog similar to that in [12]. We also
Columbus, OH 43212. He is now with M.I.T. Lincoln Laboratory, P.O. Box
73, Lexington, MA, 02173. obtain results for an infinite population system by applying a

R. T. Compton. Jr. was with t ElectraScience Laboratory, The Ohio State theorem due to Ghez et aL [13]. Our results show that a very
University, Columbus, OH 43211 He is now with Conpion Rewsarh, Inc., significant improvement in both throughput and delay can be
Wortihlgon, OH 43065.

IEEE Log Number 9206046. achieved with only modest MBAA capabilities.
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The MBAA technique described hem should not be co"t

fused with the use of multiple beam antennas in satellite X,( .
communications. Satellite multiple beam antennas consist of
a number of fixed beams, which divide the coverage area
into spatially disjoint geographical regions. Several authors X20)
[171-120] have considered systems where users in a particular Array
region (beam) access the satellite according to an ALOHA s, Output
protocol. In this case, each beam represents an independent -(t)
ALOHA process. The use of multiple uplink beams reduces I
the overall contention by allowing users from different regions XI
simultaneous access to the satellite. However, collisions still
result for users within the same region. Satellite systems with
scanned beams have also been proposed [21]. In these systems, -I,
users in a given region can access the satellite only during the WIHT Si nl
time when their region is covered by the satellite beam. FEEDBACK Error k

For the MBAA concept presented here, however, any beam Signal I
can receive a packet from any user. Each beam responds , (t)
adaptively to all the packets transmitted in each slot. Each F% I An adive mtenU army.

packet is captured by a separate beam that nulls other con-
tending packets. This technique allows multiple packets to
be received successfully in the same slot without requiring In these equations, X is the signal vector,
any scheduling or reservation-based protocols. Such a system X = [JX (t), z2 (t), ... , N,. (t)]T (5)
appears to be equally applicable to terrestrial or satellite packet
radio systems. and f (t) is a locally generated reference signal, usually derived

The organization of the paper is as follows. Section II from the array output [14]. (T denotes transpose and • complex
provides a short discussion of multiple-beam adaptive arrays conjugate.) I
and describes certain of their characteristics that are important Several algorithms can be used to control the weights in
for packet radio applications. Section III describes how an an adaptive array to make them approach the optimal weights
MBAA can be used in a packet radio system. In Section IV the in (1) [14]. The Sample Matrix Inverse (SMI) algorithm of
throughput and delay performance of a slotted ALOHA system Reed et al. [23], for example, is a popular technique. In the
with an MBAA is calculated. Section V presents numerical SMI algorithm, the array signals are sampled, the covariance

results, and Section VI contains our conclusions, matrix and steering vector are estimated from these samples,
and the weights are obtained by solving a linear system of I

II. MULTIPLE-BEAM ADAPTIVE ARRAYS equations. The sample covariance matrix is calculated from

An adaptive array is an antenna that controls its own pattern, _L N. X

by means of feedback, while it operates [14], 122]. Fig. 1 Ns = F X(k)X (k), (6)

shows an adaptive array with N. elements. The complex signal k=1

xj(t) from element j is multiplied by a complex weight wi and the sample steering vector from
and then summed to produce the array output signal s(t). The I N. 3
weights are controlled by a feedback system that maximizes S- JX(k)(k), (7)
the signal-to-interference-plus-noise ratio (SINR) at the array k=1
output. Maximizing the output SINR typically causes the array where X(k) and f(k) denote the kth samples of the signal
to steer a beam toward the desired signal and to null other vector X and the reference signal f(t), and N o is the number
incident signals.

In an adaptive array, the optimal array weights, which of samples. The array weights are then obtained by solving
maximize the output SINR, are given by [14] 4W = S (8)

W = -Is, (1) for W. Reed etaL [23] have shown that approximately N. =
2Ne samples are needed to achieve an average SINR within

where W is the weight vector, 3 dB of the optimal SIN. For the system described below,
W = [wItW2,v...w] T , (2) we assume the SMI algorithm is used.

The simple adaptive array shown in Fig. 1 has a single

4 is the covariance matrix, output signal. However, an adaptive array need not be limited
to one output signal. One can obtain multiple output signals[XXT], (3) from the same set of elements by applying multiple sets of

and S is the steering vector, weights to the same element signals. Each set of weights yields
a different array output, representing a different array pattern,

S = E[Xf (t)]. (4) or beam. it is possible to choose the weights so each pattern I
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has its maximum on a different incoming packet and also has
"nulls on all the other packets. We shall call such an adaptive I
array with multiple sets of weights a multiple-beam adaptive fl
array (MBAA). By using an MBAA as the receiving antenna
at a packet radio terminal, it is possible for that terminal to
receive more than one packet successfully at a time. , I •,

An MBAA with K beams is essentially K simple adaptive A AA
arrays operating in parallel with the same antenna elements. FaW. 2. A umage-Ip pWa ra&o aetwek ws a antal baae mitm.
Each beam requires a steering vector chosen for a different
incoming packet. (The next section explains how the required
steering vectors may be obtained.)

Two factors limit the performance of an adaptive array: the
number of degrees of freedom it has and its angular resolution. AMo F Rw co _ COsE /CTO
An adaptive array with N. elements has only N. - I degrees
of freedom in its pattern [14]. Each null or beam maximum
formed by the array requires one degree of freedom. For
this application, each MBAA beam must use one degree of
freedom to form a pattern maximum on one of the packets.
Thus, each beam can null up to N = N. - 2 interfering pack- Fig. I. Blck d•grm of dhe acqiaio.c y fmi ra ag-bcam adaptive

ets. If there are more than N interfering packets, the output soy.

SINR from the array will usually be too low for successful
reception. To improve the throughput into the base station, an MBAA

The resolution capability of an array depends primarily on is used as the receiving antenna at the base station. The patterns
the array aperture size but also to a lesser extent on the of the MBAA beams will be adapted to the incoming packets
element patterns and the number of elements. Array resolution in each slot.
is important in a packet system because if the arrival angles The main problem in using an MBAA in a packet radio
of an interfering packet and the desired packet are too dose, network is the acquisition problem, i.e., the problem of locking
the array cannot simultaneously null the interference and form each beam onto a different packet while nulling all other
a pattern maximum on the desired packet. In this case, the packets in the slot. We use the following technique for
output SINR from the array will again be too low for the re- acquisition.
ception of the desired packet. We shall characterize the resolu- First, we add a special preamble to the beginning of each
tion capability of an adaptive antenna by its resolution width packet. This preamble consists of three periods of a known
9,. We define 9, to be the minimum angular separation pseudonoise (PN) sequence [25]. Second, we make the width
between a desired and interfering packet at which the array of the slot slightly larger than the packet width by an wscer-
can maintain an output SINR as large as the output SNR for tainty interval. Packet transmission times form each user are
a packet received by an omnidirectional antenna. In general, then randomized over this interval in each slot, so each packet
0, is much less than the beamwidth between first nulls of arrives at a slightly different time.
the array, because of the array gain. Since each beam in an Packets are then acquired as follows. Suppose first that only
MBAA uses the same antenna elements, the resolution width one beam is to be formed. The goal is to point the beam
and the number of available adaptive array nulls are the same toward the first packet to arrive in each slot with nulls on any
for each beam. other packets in that slot. For packet acquisition, a single array

With thisbackground, we now describe the use of an MBAA element with an onidirectional pattern will be used as the
in a packet radio network. receiving antenna, so any packet can access the system. The

omnidirectional element output is passed through a matched
filter, as shown in Fig. 4. This filter is matched to one period

MI. A PACKET RADIO-MBAA SYSTEM of the preamble PN code. At the filter output, a timing spike
Consider a packet radio system in which multiple terminals occurs after each period of the preamble code for each packet.

send packets to a base station, as shown in Figs. 2 and 3. The filter output is compared to a threshold, and the first
Assume the network uses a slotted ALOHA protocol. Each threshold crossing in the slot triggers calculation of the array
packet received at the base station is demodulated and checked weights for that packet The weights are calculated over one
for errors using an error detection code on the packet f no period of the PN code. The element signals si(t) in Fig. 1
errors are detected, the packet is successful. If errors are found, ae sampled in baseband I and Q samples during the entire
the packet is unsuccessful and is simply discarded. For each slot. 4 in (6) and 8 in (7) are computed over one period of
successful packet, an acknowledgment is sent from the base the preamble code by using the received samples and a stored
station back to the network. Acknowledgments are done on a replica of the preamble PN code. The threshold crossing is
different frequency than incoming packets, so the base station used to determine the correct timing of the N, samples used
and the terminals can transmit and receive at the same time. in (6) and (7). The weights are then obtained by solving (8).
Unacknowledged packets ar retransmitted after a delay. These weights are used for the rest of the slot.
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"N. Emait. separate weight calculation will be done to obtain the weights
Tfor that beam, in the same manner as described above.- I

A N. oSTORE In the next section, we analyze the performance of a packet
MC.%T SIGNALS Mradio system using this technique.

SIV. PERFOtmAMC AIWsis FOR A K-Bw.. MBAA I
TTHRnSHOLD to this section we model the operation of a single-hop slotted

AND OETECTOR 2 ALOHA system using an MBAA at the base station. For a
R Kfinite population system, we extend the Markov chain model

FORM OU of Namislo [5] to include the effect of the MBAA. For an

DETECTOR K infinite population system, we make use of a theorem due to
Ghez et aL [13]. In both cases the effect of the MBAA appears

K ouTpUrs only through the success probabilities P,(ilj, K), where

Fig. 4. Block diam of a muzple-beaau adaptive m andy t h. t P,(ilj, K) is the probability that i packets are successful in
s.ignalreessdin e rra slot, given that j packets were transmitted in the slot and

Sgiven that the base station MBAA has K beams. We begin by
obtaining these success probabilities.

If a second packet arrives in the same slot, the first packet o

will still be received successfully as long as the second packet A. MBAA Success Probabilities
arrives at least one bit later than the first. There are three
reasons why this is so. To understand how the adaptive array affects performance,

First, the threshold detection logic will be designed so that it is necessary to distinguish between acquired packets and

the weight calculation process begins only once per slot.' Even successful packets. An acquired packet is one that trips the
though later packets in the same slot cause additional timing threshold detector and causes weight calculations to begin for

spikes at the matched filter output, the threshold detector will that packet. Acquisition depends on the relative arrival times

not respond to these later spikes. of the incoming packets, the length of the PN code in the
Second, the length of the uncertainty interval will be chosen acquisition preamble, and the threshold level. However, packet

just less than one period of the preamble PN sequence. acquisition does not by itself guarantee successful reception.
Consequently, all interfering packets in a given slot will be For success, the h Japtive array must also be able to null other I
present during the second period of the first packet preamble, packets that arrive in the same slot. After a packet is acquired,
when the weights are calculated. Thus the interfering packets success still depends on: 1) the arrival angles of any interfering
will be included in the calculation of 4. The presence of packets in that slot (because of array resolution), 2) the number

interfering packets in 4 causes the array to null the interfering of available beams (because a packet can be acquired only

packets. when a beam is available), and 3) the total number of packets

Finally, when the second packet is at least one bit later than in the slot (because of the finite number of nulls available in

the first, it will be essentially uncorrelated with the stored the array). Only successful packets contribute to the system l
ode replica r(t). (The cross-correlation of two PN codes is throughput.
small as long as they are displaced at least one bit from one We assume that each beam of the K-beam MBAA can
another.) Hence the second packet will have little effect on form N nulls and has a resolution width of 0,. In a given

the computed value of S. slot, we characterize each packet by an arrival time and an

However, if a second packet arrives less than one bit after arrival angle. We assume that packet arrival times are random
the first packet, the calculated value of S will be in error variables uniformly distributed on the interval (0, T,] within
because of the correlation between the two packets. In this each slot, where T, is length of the uncertainty interval in

case it is assumed the array will lose both packets. each slot. We set Tu = (r - I)Ti, where r is the period of the

Now consider packet acquisition for an MBAA that can preamble PN code in bits and Ti is the bit duration. We assume
receive multiple packets per slot. To acquire multiple packets, packet arrival angles are random variables independent of the I
the signal processing in Fig. 4 will be used. Each adaptive arrival times and uniformly distributed in azimuth [0, 27] about

array beam will have a separate threshold detector and weight the MBAA.
calculation module. The first packet in a slot will trigger For the acquisition scheme described in Section m, a packet

threshold detector 1 (7D11). When TD1 is triggered, it will arriving at time t, is acquired if one of the beams begins

enable TD2, whose function is to acquire the next packet, if weight calculation for that packet and no interfering packets

another one arrives. (TD2 will not operate until after 711 arrive within t:T1 of time t1. We define P,(I I j, K) to be the
has been triggered.) Similarly, TD3, whose job is to acquire probability that I packets are acquired given that j packets I
a third packet, will be enabled once TD2 is triggered, and so are transmitted in the slot and there are K beams. We also

on. When the threshold detector for each beam is triggered, a define Paja(i I1, j, K) to be the probability that i packets are
successful given that I packets are acquired, j packets are
transmitted, and there are K beams. Because each beam has

'In this discussion we wsMi considering the case of a single-beam array. N nulls, we assume that no acquired packets are successful U
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if i > N + 1. For j _5 N + 1, an acquired packet will be where
successful as long as no interfering packet arrives from an
angle within 0, of the acquired packet arrival angle. Q(ilj,2)= 1- 2

Let P(1, iIj, K) be the joint probability that I packets are
acquired and i of them are successful, given that j packets are i-3~ (

P(l, ilj, K) = P.(IjK)P..(i 11,j,K). (9) i = 3,. - j - 1, (16)

P(l, i I J, K) is nonzero only for i 5 1, because a packet must
first be acquired before it can be successful, and for I < K, and
since we can acquire at most one packet for each beam. 1

Finally, the success probabilities P.(i I j, K) are given by Q lj,2)= -

P.(ilj,K)= E P(LijK)
unbK) h > ( +) (.• 7

= • P.(1 j,K)P.1.(sII,1J,K), (10) 3 (17)

I since there cannot be more acquired or successful packets than The P.1.(i Il,J,2) are found [241 to be
the number of packets transmitted. Under the above assump-
tions, the success probabilities for a single-beam adaptive array i _ -
were found in 1261 to be P..0I(1 I,j,2) = I - , 2! 1 (18)

P.(10 l j,)0f, j 0
j I (11) P.1.(1 12,j,2) -

(1 -- T) (- *) , 2 <j <N +1 0, j :2

and

P.(Oj, 1)= 1-P.(ii,.1) (12) 0- j=<2(I I
For a two beam MBAA, the derivation of the success P.I 2(212,j, 2) = • j- 2 (20)

probabilities is straightforward but tedious. Obtaining general
expressions for both P.(l Ij,2) and P.1.(i Ilj,2) involves
an induction process with iterated integrals. Because of space where the F,(k,j) are given by
limitations, we shall simply state the results here. The complete 2 0

derivations of these results may be found in [24]. First, the Fr(k,j) = 2_ .. (21r - 20. _ #)-2- t doI ~two-beam acquisition probabilities are given by F27rT L(21 I*, 21

P.(OlJ,2) =I - P.(1IJ,2) - P.(21j,2), + k - 1, (2

j (13)

for k = 1,-..,j - 2. The two-beam mucess probabilities can

P.(1 1j,2) now be found from (10).

0, j 0,2 In the numerical results below, the success probabilities for
j I the one and two-beam case were obtained from the above-1, .r =)1 expressions. For K > 2. however, deriving genera expres-

I- (I + Q(i Ij,2), $>2 siGons for P.(lIj,K) and P.,.(iI1,j, K) becomes intractable.
i= Instead, we obtained the sucess probabilities for K > 2

(14) from Monte Carlo simulations. For example, Fig. shows

3 the results of a Monte-Carlo simunlation to find the sucess

{O09 ) j < 2 mobabilities P.(ilj,2) for the case N = 8, 0. = 5%
2 - <2 Trbe figure shows the esuimated sucss probabilities obtaied

P.(2,2) 2 (15) from the Monte Carlo simulation and the actual succuss

> 2 probabilities computed from (15)-(21). Note the excellent
agreement between the two.I
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.Thus the OWal number of pockets ib dWisud acording to

7 . .Q( I m) = Pr(nt I1I X1, = i Q.(a I )Q( -81').Ii' (24)
I 4 To find the transition probabilities of the Markov chain,

4L3 -we consider the operation of the MBAA and enumerate the

412 ways that each possible transition can occur. For an MBAA

-. M.2 with K beams, at most K packets can be successful in a
slot, so the state can decrease by at most K terminals in a

3 3 4 S s 7 s .s slot. Given that the system is in stateat the beginning of
a slot, the possible system transitions during the slot are to

Fm.S. Co~ariaoaof Ps (i j, 2)obtaiad alytiallywithdowaama states j = i - rain(i, K)..., -,-.-, M. Listed below are the
from a Moane-Calo simulstion. TbM MBAA p an r = 63, e, = 5*, ways that each possible transition may occur.
N = S. The simulation consim of 25 OW vif. (Solid lane: teory; ds • j < i - K : Not possible, since at most K packets canline: Simulation .mI) be successful in a given -slot.

• = i- t, t = 0,1,.--,min(i,K):I
B. Finite Populatn 1) n. = 0, n,. _ t, and t packets are successful. I

We assume a finite population of M terminals that send 2) n, = 1, n,. _ t, and t + 1 packets are successful.
packets to the MBAA. At the beginning of each time slot, 3) nn = 2, n,. t, and t + 2 packets are successful.
each terminal is either unblocked or blocked, depending on I
whether its last transmitted packet was successful or not. We
assume that at the end of each slot, all terminals receive
immediate feedback as to the fate of their packets. We also 4) n. = K - t, Y4 > t, and K packets are successful.
make the single packet buffer assumption, where blocked
terminals are prevented from generating new packets until their * = i+t, t = 0,1,-..,M- i:
backlogged packet is successfully retransmitted. Unblocked
terminals transmit a new packet with a probability p, in each 1) n. = t, n, _> 0, and no packets are successful; all I
slot. A blocked terminal retransmits its backlogged packet with new arrivals become backlogged.
probability p, in each slot until successful, at which time it 2) n. = t + 1, 4, > 0, and 1 packet is successful.
becomes unblocked again. We assume that p, is constant and 3) nn = t + 2, ni,. Ž0, and 2 packets are successful.
that p,. : p. so backlogged packets are quickly cleared.

Given the above assumptions, a sufficient state description
for the system at slot k is the number of blocked terminals
X& at the beginning of slot k. Since the number of blocked 4) n. = t + K, n,. _ 0, and K packets are successful. I
terminals at the beginning of slot k + 1 depends only on the
number blocked at slot k and the number of successful packets From the information above and the success probabilities,
during slot k, the process Xk is a Markov chain. The state the transition probabilities Pij = Pr{Xa+i = j X& = ij can
space of this Markov chain is Ex = {0,..., M}, where M be written as
is the number of terminals in the network.

Letr n = nn + n,. be the number of packets transmitted P,,,=0; s=K+1, ,M, j<i-K, (25)
in a given slot, where n. is the n,-bher of new packets
and n,. the number of backlogged packet- tiansmitted. Given
that the system is in state i E Ex, tL.' number of blocked K-: I
terminals retransmitting backlogged packets is a Bernoulli P,,-t ., = Qu(mIi)EQr(l-Ii")P(m+tIl+mK);
random variable with distribution m=O I=t

i = 1,...,M, t = 1,-..-.rin(i, K) , (26)

Q,.(li) = Pr(r,. = IXk = ) = (,)p(1 -p,)-'. (22) K.I

P.+,= E Q,,(m Ii) Q,.(lIi)P.(m - t II + m, K);
Similarly, n. has distribution mumt 1=0

i=0,...,M, t = 0, 1,...,M- i. (27)

Q.u( Is) = Pr{n, = II Xa =i We denote the transition probability matrix as P = [Pij.
= p(M(l p .iJi-PuM . (23) This Markov chain is irreducible, aperiodic, and ergodic,

since the number of states is finite. Consequently, there exists I
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a limiting probability distribution w = [v(0),w(l),... ,w(M)] C. Infinite Populatio
given by the solution to the linear system of equations (27] Ghez es aL [12), 113) have recently studied the usability and

control of a general multiple capture slotted ALOHA system
S=wP (28) with an infinite population of usent. An infinite population

slotted ALOHA system is said to be stable if the backlog
subject to the constraint Markov chain is ergodic; it is unstable otherwise (29), 130).

Without dynamic control of p,., the infinite population system
M with an MBAA is always unstable unless the number of RullsV =0(i) =. (29) is infinite. However, slotted ALOHA with an MBAA can be

stabilized in the same manner as other ALOHA systems [2).
Ghez et aL [13] have proven a useful theorem that gives the

Once the w(i) are found, we can determine the average 0ong maximum achievable throughput under optimal control of p,
run) throughput, delay, and backlog of the system. for a general multiple capture system. We state the theorem

In any slot, the throughput can be from 0 to K packets. below and apply it to our MBAA system. The resulting carves
We define the conditional throughput S(i) to be the average (described in Section V) provide insight as to the effects of the
number of successful packets in a slot given that i terminals MBAA parameters. The reader is referred to [13) for the proof
are blocked at the beginning of the slot. and for details on the control scheme.

Theorem 1 (113)): If new packet arrivals ar Poisson dis-
K tributeA the maaimum thraoghput S. achievable in a muldple

m Pr{m packets are successful Xk -i) captre channel wih oPMl control as
m=1

K M S. = sup t(z), (36)
- _,m _, Qt(I I iP.(m 11l, K). (30) ,>

m= 1i where

The average throughput is then G(o)=e - CE X(37t~) C'1 (37)
M wi

:= Z S(i)r(i). (31) a
i=0

(7 -•_ kP (k In). (38)
The average backlog fl is the average number of blocked k-(
terminals,

C. is the average number of success given that n packets
M are transmitwe&

S= ir(i). (32) To apply the above theorem to the case of a K-beam
imo MBAA, we replace the P,(k In) in (38) with our K-beam

success probabilities P.(kln,K) from (10). Recall that
The new packet input rate in state i is P.(kln,K) = 0 for n > N+ 1, so that

Si-(i) = (M - i)p3 . (33) t(z) = - "' (39)

(39

In the steady state, the average input rate equals the average Sn t(z) is nonnegative and ninuous with t(O) t(oo)
throughput, so 0,

I . s(a ) = * (34) supt(x) = maxt(z). (40)

We use Little's theorem [28] to express the average delay D Thus S. is given as the maximum of (39).
experienced by a new packet as

'a ( V. NUMEUCAL RESUU3
D = T- = -. (35) in this Se we present typical performance resiut for

a network equipped with an MBAA. First we examine a
Due to the single packet buffer assumption, the delay results finite population of M = 50 terminals using the results of
obtained here are a lower bound on the delay in any system Section IV-B.
with queues at the terminals. The quantities 9, A, and D Fig. 6 shows the conditional througlipt S(i) as a function
will be used to compare the performance of the system with of the number of blocked users for several cas when p =
different MBAA capabilities. 0.2 and N = 0.02 so that, on average, more than one packet

I
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Sthe 2-beam hroughiuts already vy come to them mum.
However, for K > 2, Mp, is much less than the maximum
value of the conditional throughput, so there s room for the
average throughput to be significantly increased by
the input traffic.

Fig. 7 shows the average performance as a function of p..
The retransmission probability is 0.2 for all cases. Fig. 7(a)

8 shows the average throughput. For low traffic, the rise in
average throughput is approximately linear with p.. In this
region there is essentially no backlog and the maximum
average throughput of • = Mp. is very nearly attained. The
length of this linear region increases with the number of beams

0 3 1 Is M n X 35 a 45 until the total traffic on average exceeds the adaptive arry
., .fuo--- capabilities. As p. increases, more collisions are destructive

Fig. 6 S() ad Si. (i) for - M = 50 Utinal system n the m*u of (no captures) due to either poor acquisition (a collision in
Ab bum is ceedp N = 0.02. p. - 0.2, N = 8, , = 5", •'= 63. time), insufficient array resolution (a collision in angjle or I

not enough nulls per beam. Thus, the average throughput
peaks and begins to decrease. Increasing pN further drives

per slot is arriving at the base station. S(i) and Sin(i) (the the system toward saturation where nearly all terminals are I
load line) are plotted for MBAA's with K = 1 to 6 beams. blocked.
These curves are for N = 8 nulls and 0,. = 5, corresponding Fig. 7(b) shows D versus 9 for the same cases. These
to a 10-element antenna array. The period of the preamble curves exhibit the typical bistable ALOHA behavior. Any
PN code is r = 63. Fig. 6 also shows the S(i) that results throughput less than the maximum can be achieved at a
for slotted ALOHA without an adaptive array. It may be een desirable low delay point or at an undesirable high delay point.
that the conditional d. 3ughput increases significantly as the Fig. 7(c) shows the average delay versus p.. When the input
adaptive array is added and the number of beams is increased. traffic is high, the delay improvement provided by additional I
Conditional throughput levels of nearly 4 packets per slot are beams can be quite large. The increased capacity provided
possible with a 6-beam MBAA. by the multiple beams reduces the delay experienced when

Fig. 6 also provides insight into the stability and average the system is highly backlogged. Fig. 7(d) shows the average
performance of the system. Although the Markov chain de- backlog. I
scribing the finite population slotted ALOHA system is always We now show results for an infinite population form
ergodic, we can discuss the stability in the sense of [1], [31]. Section IV-C. For a particular choice of MBAA parameters,
The finite population ALOHA model is said to be stable if we compute t(z) from (39) and find its maximum numerically. I
there is a single intersection point of the S(i) and Si.(i) This maximum value is S.. Fig. 8 shows S. as the number
curves. Ideally, this intersection point should occur in a region of beams and nulls per beam are increased. Note that when
of high throughput and low delay. If there is one intersection N = 0, we get the standard slotted ALOHA (no MBAA) I
point in a region of very low throughput and high delay, the maximum throughput2 of e-1 . Several important points are
system is said to be saturated, and if more than one intersection evident. For a given number of beams there is a minimum
point exists, the system operates in a bistable mode, in which number of nulls above which no further improvement in
case the average performance is typically poor. When there throughput is obtained. As the number of beams increases, I
is only one intersection point, the average performance is one needs more nulls/beam in order to attain the maximum S.
approximated by the performance level at the intersection (for that K). Also, the improvement gained by adding beams
point. We see that without an adaptive array, performance is becomes larger as the number of nulls increases, until the I
very poor, with essentially zero throughput and all terminals maximum S, is attained. However, this increase in throughput
blocked. This is to be expected, since the total traffic is more becomes smaller with each additional beam.
than one packet per slot. All the MBAA cases are 'stable. Fig. 9 shows how S. depends on the resolution width 9,.
In general, increasing any of the MBAA capabilities has a for a 3-beam adaptive array. As expected, the maxmum -
stabilizing effect on the system. As K is increased the average S. increases as the resolution of the array improves (as
throughput increases from 0.83 packets/slot with K = 1 to 9,. decreases). More nulls/beam are required to achieve the
0.994 packets/slot for K > 3 beams. maximum S. for an array with good resolution than for one I

For larger K, the input traffic (pN and M) or the retrans- with poor resolution.
mission probability (p,.) can also be increased substantially Fig. 10 shows how S. decreases for a 3-beam array as the
while still maintaining "stability." In Fig. 6, near optimal period r of the preamble code, and thus the length of the i
throughput of Mp. = 1.0 packets per slot is achieved with uncertainty interval T,, decreases. The reduction in S, is due
only 2 beams, and the performance for 3 or more beams is to the reduced probability of acquiring packets. In general,
essentially the same as for the 2-beam case. For K ? 2, we S. drops less as r is reduced from the ideal case of r = oi
could improve the delay performance slightly by increasing p,., 2 Ualy, one should net hmoose N <K- I - because the ome besms I
but the average throughput will not increase noticeably since will sver successfully eteive a packet
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A Reciprocity Formulation for the EM Scattering
by an Obstacle Within a Large Open Cavity

Prabbakar H. Pathak, Fellow, IEEE, and Robert J. Burkholder, Member, IEEE

Ahsuau- A formulation based on a generalized redprocty 00 InrTRIOR
theorem is developed for analyzing the external bigb frequency E OBDSTkAC
EM scattering by a complex obstacle Inside a relatively arbitrary --- --
open-ended waveguide cavity when it k Illuminated by a ex- ! \
ternal sourc. This formulation is also extended to include EM I PO 40Is
bIds whose time dependence may be ron-periodic. A significant
advantage of this formulation Is that it allows one. to break up the
analysis Into two Independent parts; am dea with the waqJuide Ve a
cavity shape alone and the other with the obstacle alone. Thus, cc . - 00

it Is useful for independently estimating the scattering effects " --- I
due to modifications in the waveguide cavity shape for a given5tp
type of large complex obstacle, and due to different types of tyo BC
complex obstacles for a given type of large open waveguide cavity it EXTERIOR --" 1
shape, respectively, without requiring aoe to treat the entire -
configuration each time one of these is changed. The external ..... w "..." ..
scattered field produced by the obstacle (in the presence of the CAVITOR Y VS GIRC E "0
waveguide cavity structure) is given in terms of a generalized
rciprocity integral over a surface ST corresponding to the Fig. 1. Original problem cofiluaimn.
interior wavegulde cavity cross-section located conveniently but
sufficiently dlose to the obstacle. Furthermore, the nelds coupled A
into the cavity from the source in the exterior region generally typical geometry of the general problem under consid-
need to propagate only one-way via the open frnat end (which is eration is depicted in Fig. 1. The geometry is illuminated by
directly illuminated) to the interior surface ST in this approach, an external current source (at P'). and the observer is also
and not back, in order to And the external field scattered by the assumed to be in the external region (at P). It is primarily
obstacle, of interest in this study to be able to analyze the external

scattering from a geometry of the type in Fig. I for cases
1. INTRODUCTION where the open front end of the cavity is directly illuminated

A FORMULATION based on a generalized reciprocity by the source, and for observation points which are also in

theorem is developed for analyzing the high frequency direct view of the open front end, as shown in the figure.

electromagnetic (EM) scattering by relatively arbitrary open- Furthermore, the medium surrounding the cavity structure is
ended waveguide cavities containing a large complex interior taken to be free space and the external surface as well as

obstacle or termination. An extension of this formulation the interior cavity walls are assumed to be impenetrable (e.g.

to include.EM fields with non-periodic or arbitrary time perfectly conducting walls with or without material coating).
dependence is also presented. These results are of significant ST is an arbitrary surface which either encloses the interior

interest in scattered field and EM coupling predictions. An obstacle or partitions the obstacle/termination region from the

important advantage of the formulation developed hem is rest of the open-ended waveguide region (as in Fig. 1), and

that it allows one to independently estimate the effects on SE is the surface defined by the open back end of the cavity
the overall cavity-obstacle scattering due to modifications in beyond the obstacle. It is noted that as a special case, the back
the waveguide cavity shape for a given interior obstacle, end of the cavity (at SE) could be dosed, or the obstacle

and due to different obstacles for a given open waveguide itself could form a termination which completely closes the

cavity shape, respectively, without having to analyze the entire back end of the cavity. Furthermore, the waveguide region

cavity-obstacle configuration each time one of them (i.e., the beyond the obstacle could also, as a special case, be made

cavity shape or the obstacle) is changed. The latter aspect will semi-infinite. These latter special cases of the more general

be discussed in more detail in a separate paper situation depicted in Fig. 1 ae discussed in Section 11.
The formulation for the field scattered into the exterior

enauc nrelved Sepember 26. 1991; mvised July 7. 1992. This work region by just the interior obstacle is based on a generalized
wa -pp anP in pn -nder Gmn NAG3-476 frm NASA Lewis Renem• reciprocity integral which requires a knowledge of the fields
Cimlr, evoieod, Ohio. and W pan by dh Joia Seivices Ekcuoi] PilnTm on the SuIrfaes ST ad SE due to the illumination from the
midt Conva wt No. N0OOId04a19-8 7. original current source (at P) with the obstacle prsent mad it

The =axn am *M wige Ohmj Sm Uwwh tlsoofieo P')sor
1320 Kimeanr Road, Cdonmbus. ON 43212. alSO requires a knowledge of the fields on *  and S£ due to a

1m Lo Niamr 9206296. conveniently chosen impressed test current source placed at the

0010l-94SMM0303.0O IM993
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observer location (at P) but in the absence of the obstacle and 00

with the original source tarned off. This reciprocity integral ----- t --------
which exits over ST rand SE is sown in the next section to / a
furnish the field scattered into the exterior by the obstacle p/.o,, 8.,a I
in the presence of the waveguide cavity structure. Such a-,-
formulation has the additional advantage that, in most cases , .
of practical interest, the fields coupled into the cavity fro= the 00a a"
sources in the exterior region need to propagate only one-way .. -,

(in the forward direction) via the open front end to the interior
surface ST, and not back (in the reverse direction), in order a"
to find the external field scattered by the obstacle. More will t .. -

be said about this property later. - - - -
The development of the generalized reciprocity integral is cc

given in Section H, and Section III discusses some methods for
finding the relevant field quantities which appear within this g 2. Ruined am publum cffignumLm

integral. Section IV presents some numerical results based on
this development, and compares them with the corresponding a set of test fields, (t, 1,7), which are produced by an electric
solutions obtained without the use of the generalized reci- current test source 7t(P) at P that has the same frequency as
procity integral for the sake of establishing an independent (7,'•J) when it radiates with the cavity structure present
check. An eiJw time convention for the fields and sources is but with the interior obstacle absent, as illustrated in Fig.
assumed and suppressed for the periodic or time harmonic 2. The fields (rt,,Vt) satisfy the following Maxwell's Curl I
case. Also, the cavity-obstacle configuration is assumed to be equations:
embedded in free space. V

11. GELizEDREcIptocrTy INTEGRAL FOR Tv V X F} io•, (6)
HARMONIC INTERIOR OBSTACLE SCATTERED FIELDS The fields (r, 71,) can be related to the fields (f,, T,) via

Consider the open-ended waveguide cavity configuration the divergence theorem applied to the quantity r x Ft, -T, x
illustrated in Fig. I which is illuminated by an external im- I1T within the volume V. which is bounded by the surfaces
pressed electric current source Y.(P') and a magnetic current [ST + SE + S. + S9 + E] as shown in Figs. I and 2. Thus,
source 7(P') at P. Let (Zc,7R, denote the (electric, Tax7t-PxWc)d
magnetic) fields which are produced by these sinusoidally . X x - x 7F)dv
time varying impressed sources Y (P') and r?'(P') when the V.
cavity structure is present but with the interior obstacle absent. (r x Ft - Y, x fr,) n ds
The Y (P') and V7(P') radiating in the presence of the cavity ESSSSI
structure and the obstacle produce the fields (Z,7i) where (7)

+() where ft is the unit normal vector which points into the

17= 7i, + W (2) region V,. Using (5) and (6), the LH.S. of (7) reduces, via the
radiation and boundary conditions together with some vector

and (•,]l) therefore denote the fields scateed by just the algebra. to I
interior obstacle but in the presence of the cavity walls. Note
that the above fields satisfy the following Maxwell's Curl f7,(P).- d,,s= f ( x7th-F',xF ).ifids.
equations: v J

V x 7:= -j7(P -3')(+P,') (8)
It is noted that the fields satisfy the radiation condition on

V X Ir= (P) + jw (4) perfectly conducting walls, both ft x r, as well as ft x
vanish on S. + S,, so that the integrals on those boundaries

and hence, also vanish in (7); on the other hand if these walls are coated

Vx with absorbing layers, then S, + s, is taken to be on the
VV =-x 1 L 0 71 "(5) conducting walls, whereas, if the walls are impenetrable then

S. and S. can be made to lie just within the impenetrable

It is of primary interest to find (=,li) at any external wall of some thickness (however small), so that the integrals
point P when P is on the same side of the cavity as the original on 5 and 5, can be made to vanish again in (7). This leaves
source at P'. The fields (r, Ir,) can be found in terms of a one with integrals only over ST and Sr on the R.H.S. of
set of equivalent sources on ST and SE (of Fig. 1) along with (7), thereby leading directly to the expression on the R.H.S.

• • I I I
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of (8). The result in (8) constitues a Jreciprocity open front end and te back end SE; deefore, (•,l')
rektionship b (Y.,]I:)i (and WO ar evaluated we found by trackng the fields one way frnm :7(P) at
in diffe t environments, i.e., w) are found with the P to ST via the open fron end. Finally, wider the above
interior obstacle present while (7t,71t) are found with the approximations which ae assumed to hold ate. (11) leads to
interior obstacle absent. In contrast, the standard reciprocity the following desired result for the field E•(P) scattered at P
theorem I1] relates a pair of fields (due to a pair of sources) by the interior obstacle when the cavity-obstacle configuration
in the same environment. of Fig. 1 is illuminated externally by T (P'); namely.

Let the test current 7,(P) be a point source of strength Pt;
thus, :V(p).,9 r(rx7r 9 -r'x 1:.-dS. 0 (12)

:7,(P) = :P,6(•" - V) (9) T

It is noted that the "KA'(P) on the LH.S. of (12) can be foundwhere T is the position vector of the observation point at P vateRHS f(2 ntrso n

and r' is the variable of integration (in V.) on the LH.S. of vath of (12) n terms of the a ndboth of which need to be evaluated only over the interior
(8). Now, from (8) and (9) one obtains, surface ST near the obstacle. An alternative form of (12) can

of..T(v) = f (r x W, -_ , x r') ._ ,ds. (10) be expressed as:

When the source and observer are in direct view of the •(P) .P, m f(• x TH - x 7!) •ids (13)
open front end, as in the case shown in Fig. 1, then the
contribution to r(f) at P from the integration over SE an where the integration is over a closed surface in which
(10) is, in general, sufficiently small in comparison w that encapsulates the obstacle.

from the integration over ST for a relatively large obstacle,
as is assumed to be the case here. Therefore, (10) can be
approximated in this case by: III. ON THE EVALUATION OF (Z' Z9) AND

(F'l, 17) AT ST FOR THE TIME- HARMONIC CASE
S. ) TIC, M (rxW - X x W) -fids. (11) For relatively arbitrary cavities and for high frequencies,

S5T (r',JV) in (12) can be evaluated, for example, by the

It is noted that (11) is obtained exactly if the cavity is closed shooting and bouncing ray (SBR) technique 12-5), the Gauss-
at the end SE. or if the obstacle is assumed to totally block ian beam (GB) shooting method 14]. [5] or the generalized
SE from ST. One can also arrive at (11) exactly if the surface ray expansion (GRE) technique [5], 16]. As mentioned in the
SE is allowed to recede to infinity so that the open-ended introduction, the use of (12) requires that the fields from the
cavity configuration in Fig. I becomes semi-infinite (as SE exterior sources at P and P' need to propagate only one-way
recedes to oc). In the latter case, one must impose a physical via the open front end to S- and not back. Furthermore, the
requirement that there are only outgoing waves crossing SE GB/GRE methods require shooting a set of beams/rays only
and no waves incoming (or reflected back) into the cavity once from the open front end since the launching directions
from SE as Sr -- oc. This in turn implies that the waveguide of these beams/rays and hence the propagation paths within
cavity region near and at ST must be assumed to be uniform the cavity are independent of the source location (i.e., whether
(i.e., with a constant cross section) if SE -. oc; one can the excitation be at the original source at P or be at the
then define an orthogonal set of waveguide modes at S E
and express (Ts:, ) as well as (r,, W,) in terms of these observationpointPforgenerating r7 )); only the initial

modes within the uniform waveguide region. It follows from beam/ray amplitudes depend on the excitation. The fields

modal orthogonality that the integral over SE (as SE -- cc) (•o'@) can be found by first obtaining (roY ') 7 t S,
vanishes in (10) for the laner case thereby leading to the which are the fields incident from the original surce (
desired result in (11). On the other hand, if the waveguide at P' in the absence of the interior cavity obstacle; (T,,l r)
cavity is made lossy (or even slightly lossy) as SE -- oo, are found in exactly the same manner as (r'9,V ) &W are
then the integral over 5 E in (10) vanishes once more thereby thus based on the same assumptions and approximations as
leading again to (11). Furthermore, if it is assumed that the those required to find (r', R'). It may be possible that
interior reflection of the waves back into the cavity from the the interior reflection from some types of obstacles can be
electrically large open front end is small, then (•,71) at analyzed using ray methods, in which case the ray fields
ST may be approximated simply by the fields denoted by ( 7Tlr9) enter the cavity after being excited by the original
(r, TW-) within the cavity which are scattered by the obstacle, source 7 (P') and continue beyond ST into the obstacle-
but which exclude the effects of all multiple wave interactions cavity region to subsequently reflect back from the obstacle
between the obstacle and the open front end. Likewise, one to ST as (r',s.). In the event that an analytical approach
may approximate (M,N,) at ST in (ll) by the fields denoted based on ray methods either cannot be used or does not
as ( 7., ) which arrive directly at ST from Jt(P) via the easily lend itself to find , it may be possible to
open front end, but which exclude any contributions arriving employ a numerical approach to accomplish this task. Such
from 7t(P) via the open end at S£ in Fig. 2 and which also a numerical approach may be based on a partial differential
exclude any effects of multiple wave interactions between the equation solution of the wave problem using the finite element
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or finite difference methods, or the integral equation solution domain (or time harmonic) form of a reciprocity theorem as
based on the method of moments, or a hybrid combination of originally developed by Lorenm into a form valid for fields
both methods to provide ( ', Ir) once (r9 ,W9 ) is given, with non-periodic time dependence has been presented by
In these numerical methods, it would be worth employing the Goubau [10). The present procedure for the development of
"Green's function" for the cavity without the obstacle in the the time dependent form of (8) follows essentially from (101.
region beyond ST which would otherwise contain the obstacle, Since (8) represents a result which is valid for all frequencies
so that only the fields (or curents) induced in/on the obstacle (w), it can be converted as usual into the time domain via the

would need be found, because the presence of the cavity inverse Fourier transform defined by
walls is automatically accounted for by this Green's function. 1 ro
Furthermore, the Green's function for the cavity without f(t) =(0_1 F(w)e""ds (14a)
the obstacle can be represented locally by an eigenfunction I
expansion for waveguide cavities with, for example, a circular where f(t) is an arbitrary time dependent function synthesized
cross section in the region where the obstacle would otherwise from the frequency domain spectrum function F(w). The
be present, or be approximated via ray methods in the case F(w) can be found from the direct Fourier transform of f(t)
of arbitrary cavities for which modes cannot be defined in
the usual manner. If neither the analytical nor the numerical F(w) f (T)e-j-TdT. (14b)
methods can be employed effectively to find (•,71), as -w L
may be the case for highly complex and electrically large
obstacles, then alternative (e.g. experimental) methods must The relationship in (14a) and (14b), between the transform

be employed, pair f(t) and F(w), is commonly denoted by:

It is noted that the can also be found, in principle, f(t) ,-, F(w). (14c) I
via a different approach which employs any of the aforemen-
tioned techniques such as the ray methods, numerical methods Next, employing the spectral inversion of (14a) to (8) yields
or other alternative (e.g. experimental) techniques to develop a
local Green's function for the obstacle-cavity region contained 1 0 e
between ST and SE with the obstacle present. This local I]dr"] - .

obstacle-cavity Green's function would provide the response v. -_o

at ST. due to a point source also located in the same plane ST if
be constructed approximately, but with sufficient accuracy, 27r sT dwe - ii

to emphasize only the local cavity-obstacle region between ST+S -
ST and SE; it would then also furnish the obstacle response + TW x t(Y?)Wj Von

(0, H) t ST due to an excitation (-9, R4-9) at ST due to ST+Ss

the original source 7i at P'. The evaluation of (E g, •) and The orders of integration have been interchanged in (15). Fol-

(0, W0) on ST are totally dependent on the long waveguide lowing the notation in (14c). one may introduce the necessary

cavity shape from the open front end (directly illuminated by time domain field quantities via the relations:

7i(P') and 7t(P), respectively) to the fictitious plane ST-; :(-: t) ,-* r(T; w): (16a)
whereas, the local cavity-obstacle Green's function alluded •
to above (and which plays a role in furnishing (F,'.)) V(T; t) -. 7 (r;w); (16b)
depends primarily on the short cavity section between ST i9t(;;t) -'*t(V;w); (17a)
and Sz containing the obstacle. Thus, one can separate the it(F;t) W- t T(;:,W). (17b) I
effects of the short obstacle region of the cavity from the
rest of the cavity, and indeed very effectively ascertain how t( .t) 7 t(r";W). (18)

a given obstacle affects a variety of long waveguide cavity At this juncture, it is useful to represent the (TE, 7c) spectral
shapes connected to the short part of the cavity containing (frequency domain) values in (15) by the arbitrary time domain
the obstacle, and vice versa. Yet another different, but related, functions ( T, h) which they synthesize;
approach which separates the analysis of the shape dependent )

cavity region from the obstacle region is described in [7H-[9]. / f d

V. -00 -00

IV. GENERALIZED RECIPOCITY INTEGRAL FOR 00

I4EUn oR OBSTACL SCATruRE FIELDS FOR f cJdwewt f dre-'j1'?'
ARBTRARY TIU DEPENDENT EXCTATON f

ST+Sc --o -00

The general result obtained in (8) of Section II for sinu- " t')r ) x _7t( W)
soidally time varying (or time harmonic) fields can be extended
directly to fields whose time dependence is arbitrary, as will be + ;(?;T)× x t(';()] Von (19a)
shown below. Indeed, a procedure for extending the frequency Sr+s

a! l l



786 3 MIR TACNOII ON UMAVU 7IUY AMND iHNUQ~M VOL4I. NO 4. AMAL 103

Performing the integration on w in (i9a) yieldsj

STS 00

+ T)X'1 (F;t -7)](19b)

If one assumes an impulsive behavior for j3t in both space and
time, then: 1

It follows from (20) that ~~f,": t -r) = U6f-f ( -PZr); (3MU "MUflTRI ~incorporating this information into (19b) yields 04 5-0. -11 5 0 4

if' 6f )-ds di3 (DEGREES)

contrprtof(8frc th frqunc doan Th L..S of ) ~..... ............. .

(2) a b fud iaatieconvolu'tio f ther field of th l ~ -- s itx

prs n eoThe caversu t y an d o21) stac le wi thi the fim e ldsofa n as thme .... ... ........... ..........

impulsive point test source at P, in the presence of the cavity8(DGES

convlutons re erfrmedat achpoint in * + SEv; these with a planaermuination found usning the secipwiocity integra] (RI) with the
are then superposed as evident from the integral over ST + SEr GRE and SBR mlethods.

on the R-H.S. of (21).
If one makes the approximations leading from (8) to (12), V. NummmCA REstuLS

then one can likewise obtain a time-deenrdent form of (12) Figs. 3 and 4 show the EM echo width vs. aspect angleIusing the same procedure as above; thus: patterns of a perfectly conducting 2-D S-shaped open-ended
CO waveguide cavity with a planar interior termination. The 2-D3 (F;t 0 _t sz fids Id'r fi- [!(.;7) x i(r~t"f t-r) echo width a is defined by

+T l-0;)x 9 ( - ) 0 Ji 2p (23)

where where -p is the vector to the far field observer (at P, -P)is
'e. M t) ~- .~ ;W); 1(;t). 1(w)(22b) the field at'P scattered by the interior termination of the cavity,

) as given by (12), and Ir is the magnitude of the plane wave
t) - (V; ) -Irt''(f w) 22c field incident on the open firont end (P' is located at infinity to

Since the result in (12) is obtained from (8) after using high create an incident pln wave). In Figs. 3 and 4, the echo width
frequency approximations, it is thus reasonable to expect that is given in decibels relative to a wavelength (DBW) (i.e., as
the time domain result for ?,'(r, t) in (22a) (obtained from 10 log or with a, in five space wavelengths), and the incident
(12)) will provide a useful approximation to the time domain electric field is polarized perpendicular to the plane of the
result for V,(Y, t) in (2 1) (obtained from (8)) only during the geometry. It is noted that only the first order scattering from
early to intermediate times of arrival of the signal r,(, t) -die interior of the cavity is shown in these figures. No external
which is observed at the point P. The quantities on the right scattering or multiple wave interaction effects are included.
side of (22a) may be found by transforning the corresponding The solid line in the plots of Figs. 3 and 4 is calculated using
frequency domain fields (see (22b) and (22c)) into the time the hybrid asymptotic-modal method [4], [5] and is used as a
domain; alternatively, they could be found directly in the time reference solution. The dashe lines are solutions based on the
domam. te laer aspect will be discussed i nmoe dietail in SBR [2H5) an GRE 1] [6]methdwisin Fig. 3.the one-wayaIeimppr rcigpoeueo hegnrlzdrctrct nerlo
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* EM Plane Wave Diff-raction by a Planar Junction of
Two Thin Material Half-Planes - Oblique Incidence

H. C. Ly, Studeni Member, IEME R. G. Rojas, Senior Member. IEEE, and P. H. Pathak, Fellow IEEE

Ak~e-A uniform eometrical theory of dmbwdmo WWI)
solution is developed for amilyzing the phenomenon of high-.
bequency d~fraction of an obliquely incident pla wave by aW.H)I' two-art thin, planar transparent msaterial dab. The solution
Is obtained by appropriately combining two wouinows for the
two related configurations Involvinig perfectly conducting electric
and magnetic ground plane bisections of the original slab. TheI ~analysis Is based arn the Wlener-Hopf technique, and each of the
grounded material half-planes is assumed to be electrically thin 4V" .Ph
so that It can he modeled by a generalized Impedance boudar
condition of 0(0), where t is the corresponding slab thickness. it JI is shown that to solve the boundary value problem completely, an
additional condition related to the field behavior at the Juncton
of the two material half-planes needs to he Imposed besides the
boundary and radiation conditions as well as the =us)a edgeI condition. Thils Junction condition is determined by matchting
an approximate quasi-static sdoluio, which is developed in the
proximity of the discontinuity, with the corresponding external
Wlener-Hopf solution In the common reigion of overlap. The
solution thus obtained automatically msaisfis reciprocity. it is
shown that the new UTD solution obtained here reduces to known
remdts and the numerical results' based on It agree very well with OBSERVATION WHf3a corresponding Independent moment method solution. POINT

L. INTRODUCTON ta

T FHE canonia problem to be studied in this paper is
Ithe analysis of the high-frequency electromagnetic (EM)

diffraction at a Planar junction formed by connecting two thin
dielectric/magnetic half-planes. The geometrical configuration (r poI pertaining to this canonical problem is depicted in Fig. Lig. p 1~ . Two-W. AdocukAzogefic sleb poomy wiin abliqulay incidien
The incident field is assumed to be a plane wave of arbitrary jalam waM excitaion.
polarization obliquely incident to the z axis with an angle 0'I(0< 0' < v) as shown in Fig. 1. ibe two-part planar material pln bied ofth original slab. Fig. 2 shows the gte-,
slab is composed of two dissimilar, semi-infinite homogeneous ometries of thene two bisection problems and how they are
and isotopic thin dielectric/magnetic half-planes. One half- eqialn to th orgia problem. It is importnt to note that
plane is characterized by relative permittivity e,,~, relative in contrast to the case of normal incidence considered in [11,
permeability #,,. and thickness t, for z > 0, and is connected the fields EA and H, are coupled in the present cms and obey
to the other material half-plane characterized by (Eft I14.1 42) the symmetry relaions depicted in Fig. 2.3 i the region z < 0. The present study is an extension of The material half-planes in Figs. 1 and 2 we assumed to
a* previous investigation [1) for a normally incident (8' m be electrically thin; in other words. tho parameters (t,p, 1,t)
90*) plane wave. Note that the uniform geometrical theoy characterizing each of the material half-planes we restricted
of diffraction (UTD) solution for the two-part transparent slab so that one can approximnately replace the pounded materiaI problem can be obtained by superposing the U7D solutions, to half-planes by gener~alid impedance boundary conditions
the two related problems of diffraction by perfectly electric (GIBC) of 0(t) [2] in a sufficiently accurate manner. By
conducting (PEC) and magnetic conducting (PMC) ground numerical eprmna ion t can be shown that when the

imascript teceive May 1. 1992; wovised 15,ni' IM1 .192 Ws work thickness, t, of a thin dectimanicslab satisfies the
wat sipponad by dac joint Service meevonics ft*gra (coonact N00014- condition Re (VXii,)t/2 < 0.1A, where A is the firee-space
89--1007). wavelength, the use of the O1BC of 0(t) to represent the effect

Tim miami = with, dae libcouSommen ac vy. Delammemn of Dec.ofte aerlhl-pnsisutedeae.TePC1 C3 ncs] Eq-lineia. Obso Sure Usivetsky. Coltanbus, OHl 43212.ofde aznlhf-aesiqutaeut. bPEIM
MEE Log Nuniaw 920145. bisection problems modeled by the OIBC of 0(t) can be

41015-926X19S03.0@ 01993M
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boundary conditions to model a thin dielectric slab. For
S•/ )ing by nocnutn objecs employed imeane/eisiteive •

instance, Anderson [6] solved the diffraction problem of a
-- thin dielectric half-plane by replacing it with - equivalent

(%.s% (,,.a,7 current sheet (resistive boundary condition). However, in me-
cent years, the GIEC has been used frequendy to treat material

. scatterers such as a dielectric/magnetic half-plane [7HIo] and
IVH' a dielectric-coated metallic wedge [11] and half-plane [12],

[13]. In particular, boundary conditions similar to the GIBC
/ I of 0(t) developed by Weinstein were used by Chakrabai

= " +-' ÷ - 19] and Volakis and Senior [10] to study the scattering by -

a dielectric half-plane for the case of normal incidence. Rojas
et aL [7], [18 employed the GIBC of infinite order [14], [15]
to investigate the EM scattering by a dielectric/magnetic half-
plane. A special case of the boundary condition used in [7, ".
[8] is the one of 0(t) originally developed by Weinstein [2].
Both rM. and ThE plane wave excitations were included in

( V,:) (i . [7], [8] as well as the case of oblique incidence withrespect• ] /• [7to he axis of the half-plane [81; however, their solutions
]\ / A were obtained by enforcing reciprocity without considering the

. +. problem of uniqueness. The approach of imposing reciprocity
' T •,, was also used in [13] to yield the solution for a coated half-

plane. Bernard [11] applied a GIBC of O(t'), where n is
PEC PMC arbitrarily large, to treat a dielectric-coated metallic wedge;

Aig. 2. T~w-part diecu netc slab bisected by a PEC or a PMC pound but it is noted by Senior [121 that Bernard's solution violates
plane. reciprocity. In his study on a coated half-plane [12]. Senior

also explicitly enforces reciprocity, and his final solution
solved by the Wiener-Hopf technique [3), [4]. Nevertheless, contains an unknown constant related to the value of the field
it is noted that for these problems, the Wiener-Hopf analysis at the edge. A diffraction problem similar to the two-part
alone does not yield unique solutions because the Wiener- slab problem with oblique incidence given in this study was
Hopf-based solution contains unknown constants even after discussed by Buyukaksoy et al. [16]; but their solution, like
the radiation and the usual edge conditions have been applied, the one in [10], was limited to a pure dielectric where p,. = 1. I
This nonuniqueness arises because the GIBC does not model A special case of the two-part problem in [16] is considered
the material discontinuity in the transverse direction. There- in [17], namely, a dielectric half-plane.
fore, to completely solve the boundary value problems, an Since the two-part slab configurations shown in Figs. 1 and I
additional condition is obtained at the junction of the two 2 are two-dimensional geometries, all the fields have the same
material half-planes. This junction condition is developed if z dependence as the incident field. Therefore, all the field
the field in close proximity to the junction is modeled by a components can be expressed in terms of E, and H,. As
quasi-static solution, which is matched with the corresponding mentioned before, instead of solving the original boundary
Wiener-Hopf-based solution expanded in the common region value problem depicted in Fig. 1. the solutions to the PEC and
of overlap. The approximate quasi-static analysis was first PMC bisection problems depicted in Fig. 2 are obtained first.
introduced by Leppington [5] and then used by Rojas etal. [I]. The configuration with PEC bisection gives rise to the field I
Unfortunately, it appears that there are some errors in [5], as (E,0, H) in the upper half-space Y > 0, while the one with
discussed in [1]. Both works deal with the case of a normally PMC bisection yields the field (Ee, HO) for y > 0, where
incident field. In this analysis, a similar quasi-static approxi- E,(y) - Ee(-xn HV () - H,(y) - H,(-,)mation is extended to cover the case of oblique incidence. In E.* (y) -2 H. 2
contrast to certain solutions found in the literature, where the (la)
reciprocity condition must be imposed explicitly, the additional E.(y) + g,(-Y) H . (y) + H.(-y)
junction condition developed here yields a unique solution E,(p) = 2 ' .( 2which automatically satisfies reciprocity. The term uniqueness (lb)
is used in this paper to state the fact that the solution for the

slab geometry obtained here contains no unknown constants Note that E.* and H0 are odd functions of y, with E°(y I
provided the following conditions are satisfied: (1) the GIBC 0) = H,*(p = 0) = 0. whereas E•, and He are even
of 0(t) is an accurate model for the thin grounded slabs; (2) functions of p, with 8E•,/Oy1lo = OH./8ply.o = 0. In
the quasi-static solution is valid near the junction. the following analysis, the PMC bisection problem involving

The high-ftequency EM scattering by nonmetallic objects (E , H) is modeled by the GIBC of 0(t) [2] and then

has been studied in a more limited sense than the EM scattering solved by means of the Wiener-Hopf method to derive the
by metallic or PEC objects. Most earlier studies on the scatter- scattered field in the form of an integral, where the Wiener- 3
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I Hopf factou in the integrand ae expressed in a relaively cum be set equal to zero. Also, it is eomveaiemt to express the
simple form based on Weinstein's procedure [2]. Next, an solution for (E, H:) as
additional junction condition which is used to completely
solve the problem is developed by matching an approximate fix = I, + fl,, > 0, 11. = H (4)
quasi-static solution with the corresponding external Wiener-
Hopf solution. The complete unique solution for (E, HD) where f'jý, which is referred to as the unperturbed field, is the

in integral form is asymptotically evaluated by the steepest field that would exist if the whole plane {y = 0) in Fig. 2 were
descent method to obtain expressions in the format of UT1. occud by a grounded homogeneous thin material slab with
The solution to the field (E.*, H.e) is then obtained from the parameters (f.,, p,,, t, /2). Hence, fj". represents the effect
result for (E., H.) by employing the concept of duality, of the material discontinuity resulting from the fact that the

. A superposition of these even and odd fields produces the actual material layer for (p = 0, z < 0) is characterized by
result for the original problem. Finally, several. numerical (e",a,4., t,/2) instead of (e,, O, t. /2).
examples based on this solution are presented and compared Since all the field components of Ef and 9o can be
with corresponding moment method (MM) results 118]. It determined from ?I,, the obliquely incident plane wave field
is noted that an e-iwt time dependence for all the fields is can be completely defined.in terms of l,, namely,
assumed and suppressed in the following discussion.

H I. ANALYSIS F : 0 < 0ý <

The canonical problem to be considered is the PMC bi- O

section configuration depicted in Fig. 2. The field (Ee, H;) where E01 and HO, are the magnitudes of the incident fields
satisfies the Helmholtz differential equation, the radiation and Eei and H~i, respectively, at the origin (x,y,z) = (0,0,0);
edge conditions, and the GIBC of 0(t), which can be expressed that is, Eo, -= 1E (0 0, 0), Ho. = j Hi (0, 0, 0), where R
as follows: and H. are incident plane wave fields in the original problem

a 2 a - 1 + shown in Fig. 1. It follows from the definition of f- that4 • saz2 - 2 9 ,o -. = Pt. + -,(,r - '"c + 4,')f'o.

{=csi-•,c cl 
1 where

wher2 A(w) I= i cos' 9 ' +coo sin'9,(
•-cose,' 1 e aTx[,.-o0, x>O; (2b) 0 Izi,, 6>

II
where A(W) = Cos2 61 + cos2 W sinI f', (6c)

iK=:KI +iK2=:k sin 0', KI, K2> 0, K2-C I IV., ; (sino,' - sin t, )(sino,' -sin vb,) (d

(3a) = (sine4:: +i C ,)(sinV +)esb,)e
sin = _(3b) (i , i •

2 K(c,, -1)t,/2'(sn0 si
2----k (sin 0' + swn( ) (6e)

i i#4.1 The next step is to solve for the field f•', by means of

Si, i(3c) the Wiener-Hopf technique. At this stage of analysis, the2• 2 2iv, siv, K(p,, - I)t./2' factor e-ikscoss, is dropped to simplify the notation, and
it will be reintroduced after tbe analysis is completed. Note

that die boundary conditions satisfied by the field f?, can• i= si n (3d= be obtane easily by susiuigtedefintion of ftf in (4)
2 2 ;=O Bll and the solution of the unperturbed field I-,, given in (6a)

into the GIEBC of 0(t) given in (2). TIbng the one-sided

Fourier transforms, which were defined and discussed in [I],

::F alow)d of the new set of boundary conditions forf•fs, one obtains thesin 12 .2 bf -. ,. (30) boundary conditions in the spectral *, domain which couple
i. 2 (2) ft (.,0) and A;(.,o). Here., E•(s,p) and H.(sy)

Note that k is the free-space wave number, and K is tem- the one-sided Fourier transforms of EB*(z, V) and H.1(z, V),
porarnly allowed to have a snall imaginsy paet for purposes respeathvely with the subscrpl + denoting b function regula=
of analysis. Once the analysis is completed, the imaginary part in the upper half a plane defined by Im a -- r" > -r_- =-K2,



432 -ME TANSACNO GON ANTENNAS AND ROPGA•tOK. VOL 41. NOL 4' AftL IM*

and the subscript - denoting a function regula i. the lowe Equations (sa) and (Sb) have a common overapping ri
halfsplmer<r+=K2cos0.ItisnotedthattheGlBCof r. <r <r+ inwhihthefunctionsontheleft-mduigb-
0(t) in the spatial domain becomes uncoupled if it is expressed hand sides am regular. Hence by analytic continuation [31,
in terms of the normal components (p components in this (41 the two sides of (Ua) define an entire function denoted by
case) of the fields. Thus, one may also decouple the boundary PO(s), and the two sides of (Sb) defn another entre function.
conditions for the spectral fields in the a domain by introducing P(s). Since the ed condition allows only agebra growth
the following auxiliary functions: of the fields in the neighborhood of singulauities [3], it follows

from the extended form of Liouville's theorem [31, [4] that
X*(a a')PO(s) and I"(*) can be expressed as polynomials determinedI

[a~H~a~') ios~E (sly (7J~Ca) fham the behavior of (8a) and (8b) as is -* oo. Applying
i the edge condition, which is related to finite enegy nwar the

discontinuity and thus implies t a the components of dI
ZI(ea')= - .(.(,,) _ 8 . . ] fields parallel to the edge are bound eo can expand bothz* (8,,) si'•o:,'•,,des of (8) in seie up to the tem of 0(s-I) as Isl --* oo..

(7b) Note that the asymptotic expansions of the ratios involving 3
am the G* functions presented in (8) were given in [1]. Thus,

comparing the coe mcients of the corresponding terms in the
X(8, V) = X+(8,V) + X_(8, Y), expansions ofboth sides of (8), one obtainsthreeindependent
Z(8, Y) = Z+(s,a') + Z_(8,,V). (7c) equations for the unknown constants E (0*, 0), H: (0*,0).and H;.(O*, 0) as follows:

The boundary conditions in the a domain can now be expressed a i0 0)0asHfollows

via (7a) and (7b) in terms of the unknown functions x*(a, 0) HT(O+,O) = H*(0-, 0), (10a)
and Z*(.,0) instead of t'.ej(9,0) and (s, 0). Following
the Wiener-Hopf procedure (Jones's method) as in 11], one E."(0+,0) = E."(0-,0), (10b)
finally obtains two Wiener-Hopf equations which hold in the )
strip r•- < " < i+ for the unknown functions X*'(a, 0) and r
Z*(a,0) as follows: Z oH;"(o-,0) = Zo[a:tHeI'(O+,O) - a6H"(O-,O)] (1+

a:8~~~xO -E(~0 ab -ae b 1-D _-(s)- (, Cl-) T,- (, ..) KL-.-(O+,O)[l a.*bea-beain2 ,]a

+ aesm9 1+ 1 5 ~~

G+ _(a , • C ) X _(8,O)- a, r) < <ro8) :)*_G+(s, QI + +1 JV-r T Kco V ~

DI (a) - Z- (8,0) 3
where A:, Cd:, T+(a), a, and 6 are defined in Appendix I.

ae G+(s, aV 2)G+ (Ls Z+(.sO) - D,(,), The y components of the fields are given by
Ga G+(a, z,)G+(,, ) + u 8- ( 1

(S < r < (8b) Ev =-ZoH. +cose'-E.], (10d)
Ksin -8 a-- Da'

in which

G(e, v) G= +(sv)G..(sv) = K (9a) ZoH, = [E. - cosr' ,olH.. (10e)
6 ( + K sinv WK8in9'1aX 8V I'

Furthermore. it follows from the asymptotic expansions of (8) "
3=Vi -, m (1) >o; (9b) as II -'oo that the polynomial P*() is a consant given by

the functions D" ae defined in Appendix I, and the ex- po(s)
pressions for G* (a, v), which are obtained using Weinstein's -O'. (0 +0),prcdr [2], me sumrie in [7] and wre not repeated +_!a-

here. The intermediate steps that lead to the Wiener-Hopf K s• n - sin Q- r2(
equations in (8) were discussed in detail in [19]. Note that coo _ ___ r Hs [ (o0,+o) H;(0-,o) 0 }
the functional forms of De,* are known; however, it is seen- + I I ; nT - b+. 91 # '

from the expressions of D1* in Appendix I that they contain 2 (+ (h)
some unknown constants related to the surface values of the
fields at the junction, namely, E•e(0.*,0), H,"(0*,0), and where C: is given in (40b); and P(a) is a linear function
H-(0*, 0). These constants arise from the one-sided Fourier of a, namely,
transforms of the terms involving derivatives with respect to
z in the original boundary conditions. Pe(s)=ms+n, (lib) I
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P.110,0), (I le) weidasbins IN lame iest e mpmat id s 6" =cood

faces.in Noedtd -eadn ia e-" 11  has been
n = 6E.9(o,o) oZo~ar4H',(O"',O) -agH',(O-,O)) soppmuSed to simlify he moio. ~ v.~

75 -,Ksi 1ae.(a: -e~wn tea isuso as in [San I LtegW
12w o~Kin9st1atsic fieldE within the region of wmeest t 4Cp-C K-1

(ld) my be expressed as

Since the three independent equations in (10) are no enough (i)Ito determine the six unknown constants, some other con- A v 1a
sie a rensa needed to determine the final three pics* i 1  5pt 0 lb

Of information so that a unique solution is obtained frthe f-D +CiP a/t.00 (1b

Problem at hand. It is noted that the fields k* and H~which where A, B2, and C awecosat
aesolutions to the Helmholtz differetial equation together v. In other words, E.v exhibits logarithmic as well as

with the radiation condition in the s domain, are given by algebraic growth as p/ti -, j cc . The key step in this section is

= A~.,O~'~',to determine the relationship between the logarithmic growth
y ? 0.and the algebraic growth (or the relationship between C, qand

fI:.,)=I:e,)e~' VO. (12) B.).,which can be accomplished byuosingthe integral form of

Hence, it follows from (7) and (12) that LapIACe's equato, namely,
k[sZ(s, 0) + #coSg X(1 Oq,0) ei~, Y 2! 0 fi 8t (6

82 + VC2 cof 9'iŽ,S.. A l= .,~, (16

(13a) where fi is the Outer normal of a closed contou L. Applying

zoft'(s, Y) = id SX(.,O0) +0 ICos O'Z(8a0)],ei#V, (16) inside material medium I with the contour of integratio
82 + V2 coS2 a't as follows:

Y20.(13b) = 0)O Z?( t tra

The expressions above deternine the spectral z-coponent W , ' (. ý) - (0, 0),

fields from X(s, 0) and Z(,s, 0). However, in both of 0 3a) and where zft, -. c and the labels above the arows denote the
(13b), theme are two poles at s = :kikcw a, whose residues paths of integration, one obtains

introduce nonphysical (exponentially growing) fields in the t'(010) OE'
spatial domain 120]. Therefore, these two nonphysical poles B.1- + liz--a .Ldi =0. (17a)
must be Suppressed by setting the residues of Ee' and H,0 to (a., ta j /2)
zero at a ik con, 0'; in Other words, two more independent Inertn ln imiarcotour, ufndeecrcmdu
equations ar bandasfolw:Itgaig" a mi otu btn&d trc eim

3 iZ ( ±ik co s 0', 0) + X ( ±ik co s 9 V, 0 ) = 0 . (14 ) 2 i e d ( s /.t2 , - . cc ) - . t / ) C~ ~ i =
At this point, it remains to impose one mome constraint -BL + iim Cf~'" - -d 0 (17b)

to completely determine all the unknown constants in the 2 8/ (0,0) OIexpressions for X*+(s,0)pad Z+(!,0); this in turn will leadis
to unique solutions for E;' and HSm by means of (7c) and Laewise, integrating (16) along the following contour in free

(13). The additional constraint, which may be called a junction sPace (assuming t1 > t2):3condition, is found in this study by followingaprcdr t 2 ~istim t1 pig* t a

similar to those used in [5] and [1), where an approximate (-Z-' 2. (z., P.i) O (-Z., .i ~-.
quasi-static solution for the total even field, Ee(z,y), is222
obtained in the neighborhood of the junction. Note that this btns(sZ/t2 . c
quasi-static solution is valid outside and inside fth material ~a,,2 E

laer o te aeralcotePFMC ground plane (refer to Fig. Of soi+ us I- di =0. (17c)
2). 2 mtr-,n. On

2 (-z.,t2/2)

M. DEI1RuN4amo uN cw nfoN cmw ~ Note tha the same equation as in (17c) is obtained if it is
Let .9.z~y dente he otaleve x-ompoeti qusi-assumed that t, > t,. 7b find the relatonship between Cj and

stati feldp denotde the mtotial reveon. A-component Equasi B9 from (17), one must first find the relationship amon the3 ~ ~ ~~~~~~~~~ sttcfedotietemtrilrgo.AsltE Y) dervatives OE-9/On. It is noted that BEI.,. /On can be
and SE,,2 (z, V) be the total z-component fields inside maera - .22,.

medium I {z > 0) and material mediuum 2 (z < 0) eqxesusedinemmsof the usifentaliHlfield as
respectively. Note that the superscrpt q is use to denote a 8E.9. + co O.Uquai-statc field. The fields E-9, satsf =ilc' qain O Zo 4-ikHF.L icsVK

in the region KP = V j' 1 along with the boundary (18a)
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DE9,2 ZO ikr.. + from (21a) and (22a). one o ae •"write the expression for f.

= Io -skp,.1 . + -,given in (15b) as follows:

(OHL2 +I9kcos ' 08b))]j -bQI (X+QIInp)_cosVQ D (z+Q3 InP),
Q -Q& ap/t, -0o. 1Z-Q

where =,' an. R 1. is th dieton of/t theo (23)
integration paths along the interfaces. Thus. substituting (18) Since the quasi-static solution is used only for masching. no
into (17) and applying the boundary conditions which require further analysis is required

Ht= Hj' 2 and Z9H*41/81= H9/ at the material-free A junction condition can be obtainied by matching theI
space interface, HI, = Elf, and OH,1,/81 = 8Htq,/8 at the quasi-static solution developed above with the cm esponding
mati-ma interface, one obtains Wiener-Hopf solution within the region of overlap t, -C

B,-+p,.(' + q)+ -( +q )= o, (,9a' p < K-1 . Now that= region t < i < - the2 spatial domain transforms into the region K C IJ1 C t<

+ ~~) -~3) + ~'(~2 ) j()) 0, (19b) in the spectral a domain. Thus, the approximation of die
even scaerield ET(x,O) in t gion t , < z < K-I
can be found by taking the inverse Fourier t;nsform of the

B, ( t2 t1 ) + w-(P)+f')-Cs + 0 function &~.#(a,O0) expanded in a series of.a irfthe region
2 (19)K -C jai < t-. t (.,O) can be obtained via (13a), and

in which it can then be decomposed into a sum of ft (s,O) and
e .(s, 0). Without going over the details, the asymptotic form

-) -skZoJ H dl, (20a) for Ek:.(a,o) in the region K J 4C ( t;"' is given by
.mbm 2

f OH'\coest ikl") (2) ( Ioo'HL"+ml'd di, (20b) o) +T

"[Zo{aH'(o0,o0) - a.'(0-, 0)})c, co 6Vsin(o:l
where and are, respectively, the integrals along L - sin -sinC
the free spacn=dum' 1, free spac-•mei 2, , = and medur ikovs-in- •,sin ¢:{E',(0~s+, ) - E:e'(0-,0)}1-medium 2 interfaces in the directions of -I and -j. _ 1

Eliminating 4(1).(2)'(3) in (19) yields viw(sin(2 -sin(I)
C,! - Q, B9 + COO D'bq = 0, (21a) • L + mln_-

[ 82

Qt K (= " iU I), (21b) 'k a-,"4oikV •Z°{H;'(O+,O)- H;'(O-,0)}
= a (2, v/2(a - a.)

1+ iIn+.] (24a)
b _I = 1 [ 4'

j(q' ' ()]. (21c) _ _ cos2 V sin Q sin (2 (,"1)
+Je E "e/ a2 -a aea(sin (2 - .sinQ"( 24

Note that D.2 given in (2 [c) is a constant because the The asymptotic expansions of the ratios involving the G* I
definite integrals (1).().(3) evaluated along the horizontal or functions in the regionK c 1I. C t,"' were given in [Il.
vertical interfaces between the different media yield constants
independent of z and y. Similarly. eliminating •z'()'in Taking the inverse Fourier transform ot(24a) and then adding
(19), one obtains to the unperturbed even fieldE:"(z,0), which is expanded in I

Maclaurin series of z up to the term of O(z), one obtains
CQ- Q2 B, + fD = O, (22a) the behavior of the total even field EL.(x,0) (after some

simplification) in the region of interestit 4: z -C K-I as 3
Q2 (22b)

s(z,0) ,- constant + cox__ __[_ __ _ _I
JD9I el - I I" +(I". e. - I. P +i k V5,a",ZO{fH; 1(0 +,0) - H;e 8(0 -,0)}

S, 1)q('2 + (,.. - 1)e•Q) + (a. - ae)

+ (p,.,E,, - 1L,.,E,.,),]j (22c) 1(41 I:
+ + i k COB t /sin¢; si-n {(O- a+,O0) - E= O-(0,0)}

b, 11 is also a constant as a consequence of f')'(2)) being (sin eQ - sinc1)
constants. By solving B, and C, in terms of DAl and ,2 ( +(z +Q.lnz), (25a) ,,
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(29b)
where is diesMod in (42b) and H is the total normal

field. Comparing (25a) wit (15a) an (2) n oig o , lhInp - Inz in (23) along the free spece- umitrial inla rlace, it is 0 An.

men that (25a) and (ISa) me only matched when the codffcien A22 n 9' Cos wCos'- 01 'r, (29C)
c, in (25a) is identically ae that is,

IAll =-A2(cmwos#! *+coO we) + (cow + co 0')

Hv.(0.Ho= ..H(o-,o). ( [A22oS + g'(CO'"WCO$+CO,. - --- )C ,

The condition above, which is called the junction condition, (29d)

ogether with (10) and (14) determines all of the unmnown
constts, and complete solutions for &.' and HA. can now (w, e'; r) = cot iN-'(w, ')M(#',O r), (29e)

be obtained by means of (8) and (11)-M13).

IV. UTDM SoUOS

At this point, the field ?I' is readily obtained by taking the A(w,9') - r )W(W },)J (290
inverse Fourier transform of (E,, H,08) and trintoducing the L F

factor e'ks cMa ' suppressed earlier, namely, [htwe)Cosw.-oosO'Aw.)

= [ E 1 h(w.) cosw.
fi L ZoH° J (29g)

e, A- Mu*'f: Zo~(s,p)e ~ pO ?( ' cot#'±ih(w.)cosw.

- v(2ir Z . aLI, w I h(w.) cosw. -cos w 1; 2h

(27a) in which VI,2 are row vectors and

Since one is interested in finding a high-frequency U'TD solu- 9, (w,v) = Gi(-kcosw, v), (3a)
tion for Ii. when Kp - oo instead of numerically integrating
(27a), it is convenient to employ polar transformations to the
variables in (27a). The transformations are ae,(we),+(w.,v:,) + age(w.,v2 )g2(w.,

a=-Kcosw, j#= Ksinw, z = pcoso, p = psino, ag+(w., v.e,)g+2(w,.,v) a.t(, . , V,2W

(27b) (30b)

where w is a complex variable. The field f?. can then be

expressed as follows: w* il t 1+COG COseVý (30c),r 1 +ine' )' K, O~

e-iks Coo 0,

f,(p, @, z) = 2vi Jr ,v, e; #')eiKJP=(w-#)dw, &(w) and se we defined in (6c) and (ý42b), respectively.

F Note that when 9' = wr/2, the matrix Bl becomes a zero
p2!0, 0<01 <W; (28a) matrix, C(w) becomes diaonal, and the spectrl functon

- '(w, 01; 0') in (28b) reduces to the corresponding solution

where the integration path r in the w pln is te same as the found by Rojas et aL [1] for the cae of normal incidence.
one in [1, fig. 3]. Without going over th~e details, die spectral Evaluating (28a) using the Steps descent methoxd as in [ 1)

function PA(w,e4;9') is given by and adding the unpertu:e field 1, yields the total field fix,
which is given byIi..(p,,', Z)) [ P. ] = r.+ , + ?. +• += (w(,) () sin nw 1* 0(,;•'v + Zi(u,,4/;9')1 i1 (p,4,,) = [i.o:] j

I + c-CWto)O o <(),O' < J. (31)

. sin (4')t~(u,, )CPQ6')1oa; (28b) The firs term. i=, in (31) is the incident field defined in (5).

where the matrix C' was defined earlie in (6b), and The second term is the reflected field given by

0 2Fa: -1 = - 0') [',U( - -# ') + A'"U(# +0' -I.(V,,,.) = 2 0 sin C"' - sinC;' J(Sr + )o ~e-'KO=•*+#')-"sn, (32)
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where U is the unt sop fntn and a• e the reflection whe t(w). i = 4,5. me m residues or s• w4 (w) at
scieng matric desaed in (6b). third tem, js. in w,. The function F(x) in (34b) is the wel-nown ammion

(31) is the surface wave field expressed as function [211 given by

S= {-..(t.,)eK "+ (. -*€) F(z) = 2iW Jei'= e-dt, -!! < arg(z) < ,

+ . .)eIKP"('a -'U(€ - •.,)}e''"', (34b)

(33a) whe the Nbranch cut for F(z) in the complex z plane is the
positive imaginary axis. Note that when the magnitude of x is
taImp, F(z) approaches 1. Therefore, as Kp -f 00, the only

=e I 0.A arccos [os(IsmnV,)J (33b) wozem term left in the expression for 151 is UNe first term,
2 Remb which is refund to as the far-zone diffraction coekciet N.

It is important to note d- the UN D solution obtaned above
f..(w',,) and ?..(w:.) am the residues of P 1 at the surface satisfies Ue reciprocity property; in oter words, satisfies
wave poles W-6, = and w'.. = w + U, respectively, the following condition:
that is. ( ( = D LV.(•,';9') = V]( V,, ;'),

I.(:~~W +, =gw Dr VD. P1 (0 0" 09) = A. W4, 4'; 9W).j5
Cos '+. , + C •o,4" The derivation of the above symm;netry property is discussed

Sl s *(4")•{ C&)• I)toz; in Appendix U.
As stated earlier, 11, is only part of the solution for the

canonical diffraction problem of a two-pan material slab
i = 1,2 (33c) illustrated in Fig. 1. The remaining part of the solution is thefield ?•2, which is defined as

with *(w.,,), i = 1,2, being the residues of sinw 4 (w) at f 12,, w
Wt,. The last term, PI., in (31) is the edge-diffracted field f2. (p, 0, Z) = [ -(P, E , 2) 0) < ] < w. (36a)
given by LZoH(P,4',z

tj - i (4',4CM' #INote that 2. is the solution to the other half of the bisection
,) IKP- bI" O ''" ( Y)PoZI problems (see Fig. 2), namely. the two-par material coated

0 003 PEC ground plane. Also, f2 is readily obtained from the
0 < 4',b' < , (34.) solution Ii. if the concept of duality is employed. Thus, the

where 0i(4',; t;') is the uniform diffraction coefficient ma- total field, f2, of the PEC bisection problem is given by
trix for the junction of the two-part material coated PMC r 1 (p,4',z)=f•.+l 1 +f +4'., 0<4',4,<i, (36b)

ground plane, which can be expressed as where the reflected field t, the surface wave field 124.7, and U
e- l the diffracted field P2,, respectively, have the form of Lji2 .

(4 "; 9)to L f f, and Ltlj'1, except that Ue off-diagonal terms of all Ue

1 - F(-2Kp-) '2 matrices in (32), (33a), and (34a) change signs, the magnitudes
0 )+ 2%)'; (34b) Eo. and ZoHo. are interchanged, and the parameters e,,., and

P,,.. are interchanged; the matrix L, is defined as follows:
in ich - sin i =1,2,3,4,5, (34w) hi ch. (36 c)

The solution (E,, H) to the original problem shown inFig.

W,11 = -q~q 2 =Web, 9 ,,3 = I is obtained by superposing the solutions to the two bisection

W . W. = W +', (34d) problems, that is,

E1(6 4', z) = E(p, 101, z) + .gn(O)E(p, 1.01,z),
l•, (I-•r - c'(k') - K'A"(o(• +- O)Po., (34 -'" < 0 < 1r, (37a)

r. = P..o,, F. = (3..(.), (34f) H.(p, 4, z)= H*(p, 101, z) + agn(4)H.(p, 11,4 z),
-w< 0 < r . (37b)

r I',=,;w)(wi,e;n) + ] where sgn(O)= I if 0 >0 and -I if # < 0. If one defines 3
[ C o s W i + C o s e ? .= [ E . , 1 ' 1 0 , ] ,'3 a

sine Cd)bW)( o i = 4,5 (34g) "1 [
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(37):•cabe swdw ntu
~ +) P. + .+ - m

o < 101, 4V < 1,', J(3b) -

where 0.4b e

S- L2[(ll)+] + IIk) U (c(deg-ee

(a)
V. NuIERCAL RESU...1The UID solutions developed dinte previous section for ZVthe two-par planar material slab and terled• geomt rie

consist of simple functions, most of which we amenable ..
to numerical computation. The only functions that require
a simple numerical integration ore g,,(w, v). This simple . -* P

integration can be quickly and efficiently computed with a 0]
Gaussian quadrature. In Fig. 3, the z component of the total -i - I
field, which includes the scattered and the incident fields, for 04

the two-part thin material slab is presented. It can be seen that 03

the total field is continuous across the shadow boundaries of -

the incident, reflected, and surface wave fields. Furthermore,
it is noted that a superposition of the two sets of GIBC, which 0 0 VO I PC AD - O
were employed to replace the two bisection configurations in * (degree)I this study, is equivalent to a "jump" boundary condition being (b)
used to model the original two-pan transparent slab. Hence, ft.3. Toa f a o-lplowm mo slab ezcikd by = obiquly
discontinuities occur at = 00, 1800, and 3600 for the results , w ph wave. (a) Mt, powisz.om: Eo, = 1. ZoHo, = 0. (b) TE,
shown in Fig. 3. pohuizuic: As, 0. ZoHo, = 1.

m To test the accuracy of the U171) solutions, the singly edge-
diffracted fields in the far zone are computed for a thin material

half-plane where the incident field is an obliquely incident
plane wave (0' = 450) of two different polarizations (TM.
and TE,) and 0' is fixed and equal to zero. The 1T1D solutions
we compared with independent MM results as shown in Fig. 4,
where the diffracted fields Ef and ZoHI we gen as f -

of the soattered angle 0. Note that the UTD solution for a
material half-plane can be easily derived from the solution Zy- -
for the two-pan slab geometry if one replaces either material -a
medium I or 2 with free space. This can be done by letting g-. ---
the correspondingc,. -~ Iand ;&, -- 1, orby Letting the V. S0

corresponding thickness t -- 0 in the solution obtained in the
previous section. Note also that the MM solution for a single
edge was obtained from a material strip of finite width by " I -
a time-domain isolation technique [221, which provides good I 4. .... D!l I

results only when the field diffracted from the first edge of the
strip can be fairly well isolated from the effect of the second " s * x a a - s s x a a
edge; that is, when the scattered angle 4 is not far away from 4 (6d"0re) 0 (degre)
0* so that the difference between the path lengths for the field (a) (b)
scattered from dte first and the second edges is not small. Since S.4. M f nm IM dm ft be f• r di&,Mfucd by a rW
the region near edge-on is the most critical, Fig. 4 provides Wiflame (dbl4, e cdee). (a) 711 Polksoi (b) TE-. Pawmdm

3 a good indication of the validity of the U1D solution, and it
is seen that the agreement between the U7D and MM results In Fig. 5, the singly edge-4dUfftd fields in the far zone
is very good. we computed for a thin material strip based on the newly

I



436 M TRANSACTIONS 0ON ANTENNA AND PMGP*GAM. VOL 41. NO. 4. AMIL 1993

oActually, only the PMC bisection problem is solved using the
---------- .Wiener-Hopf technique after the two-part grounded thin slab

- configuration is modeled by the GIBC of 0(t). By employing
'-, 1EA the duality principle, a solution to the PEC bisection problem

,,-~---- ! is then obtained. Finally, a superposition of these solutions
* ~provides the result for the original problem. The final solutionsI

are expressed in the high-frequency UTD forms, which involve
relatively simple functions amenable to numerical calculations.

The application of GIBC or generalized resistive boundary
Z.IH,'I conditions (GRBC's) of 0(t) yields second-order derivatives

-40. of the fields. This creates difficulties with magnetic dielectric
_0 materials because it gives rise to solutions which are neither

G 30 04s GD 7s 90 unique nor reciprocal even after the edge condition has been
(degree) applied. In this paper, the problem of uniqueness is solved by

(a) imposing a newly developed junction condition in addition to
the boundary and radiation conditions as well as the usual edge
conito. This junction condition is obtained by matching

o ... an approximate quasi-static solution with the corresponding
_1D TD Wiener-Hopf solution in their common domain of overlap near

the edge (or junction). The solution obtained by this procedure

-o,,yields a diffraction coefficient which automatically satisfies
reciprocity; such a useful result obtained here is in contrast

rl -30 • to the results in some papers found in the literature where
the reciprocity condition has to be enforced explicitly. Note
that the reciprocity property is not as readily apparent in the

so solution for the case of oblique incidence as it is for the case I
of normal incidence. Thus, the development of the reciprocity

-5 30 045 60 75 so condition for the case of oblique incidence is provided in
• (degree) Appendix U.

(b) The UTD solutions given in this paper are uniformly valid
Fig. 5. U (without multipleintes MM dat for die fr f across the shadow boundaries of the incident (or transoitted),Fig 5 UFD(wihot ulipeiteroacto) vessM aafo h a il refiected, adsraewvfil.ToverifythacuayoI
diffracted by a material strip with 0' = 0 (oblique incidence). (a) TM. and the accuracy
polatization: Eo. = 1. ZoHo, = 0. (b) TE. polarization: Eo. = o, the newly obtained UTD solutions, numerical results based on
Zo0 o, = H . UTD are computed for some geometrical configurations and

compared with corresponding results based on an independent
obtained UTD solution, where the strip width is 7 and the MM solution. It is shown that the agreement between the two
scattered angle 0 is equal to the incident angle 4/; the incident solutions is very good. Finally, it is noted that the solution to
field is an obliquely incident plane wave (01 = 450) of two the two-part problem can also be applied to some special cases
different polarizations (TM, and TEJ). The results computed where either or both of the material half-planes in Fig. I reduce
from an independent MM solution for the material strip [18] to free space, PEC, PMC, or resistive sheets. By including mul-
are also included in Fig. 5 for comparison. It can be seen that tiple interactions between the edges when their effects on the
the agreement between UTD and MM solutions is excellent total scattering are significant, the UTD solutions obtained here
for the observation aspect away from grazing. By including can even be extended to treat inhomogeneous thin material I
multiply diffracted fields for a finite strip as was done in [23]. strips with slowly varying electrical properties upon replacing

the results based on UTD can be made very accurate even in them by sections of piecewise-constant material properties.
the region of grazing incidence or scattering. IX

VI. CONCLUSION The functions !O+(s) and D°(s), which are regular in the
A uniform asymptotic solution to the problem of high- upper half a plane r > 1- and the lower half a plane < r+.

frequency diffraction by the planar junction of two thin ma- respectively, are given as follows:
terial (dielectric/magnetic) half-planes has been developed in i
this paper. The incident field is assumed to be a plane wave of D*(s) = Q s in
arbitrary polarization, obliquely incident to the axis or line of (s - sin •)
discontinuity in the otherwise planar two-dimensional material JG*(a,C r +
structure. The two-pan transparent slab problem is not solved G*(s,C) [8- Kcos*
directly; instead, the solution is obtained by appropriately com- G+(Kcos 0,Ch) IA

ing PC an PMCgroud plne bsectins o theorignal lab.G+(Kcos4',C1) - A i/ ' (9bining two solutions for the two related configurations involv- T_ (39)ing PEC and PMC ground plane bisections of the original slab. G+ (K cos 4Y, Q1,) s - K cos /
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where 0[EJO (I - Em s. >0, (42b)

c -= c --o.w l • E 8( o+ ,o ) - E : .( o- ,o )) ,% s- ;

772P7fKusin t

+cotVZosin("H 1 ¶OO) -sin C (oo)1

+ Z( + 0m.,O ) - H +O(O (40a) vrl .319' 9L0

- xoo s#'(a, - a'ZoH:uI" }. (42)

V2w sin (sn AC / i) Ca.' - a( 0-82,-o .=- _( cos (42d)
U T, 0a sin g+in + iq

+[(siý' si C,' ) i Cos 2 0'a V i
a; at K Op and Hov is the magnitude of the normal component of the

.Cs ') sn 1 incident field H' at the orgin.

AWENIXX D

~K sin(sinCnCh ) Let the entire upper half space {f > 0) of the PMC
V: _ sin'+( sin- o) , (40c) bisection configuration depicted in Fig. 2 be enclosed by a

surface S. The reciprocity theorem in the most general integral
and LEo is the magnitude of the normal component of the form for the entire region enclosed by S is given by
incident field E. at the origin. Likewise, DI (a) are given by § (2. xH. -& 2f x.) • 'Wd

D (A:[ + : + c"] SD•()=T± (a) Ia - Kcoso' + A.[[[,J.+A

a- Kl T+(K cos0), (41a) V
a - K cos,' (43a)

1 -where V is the volume of the entire region enclosed by S.
7'(s) = - i21 is the outer normal of S. .7. andM. amrespectively, the

T+ (s) = ( )(i - )electric and magnetic current densities of sources a and b; t.

[a!+cs 4b and ft- are, respectively, the total electric and magnetic field~s2 +(s,/)G+(sZ/6)+, 41b)radiatea d by sources a and b in the presence of the material
coated PMC ground plane.

1 Let source a be a line source consisting of traveling line
T_ (a) = (a - at)(2 -82) currents with e-k*(ca' dependence. As source a recedes to

rG_ (a, t,4, )U_. (a, v, ) /•1 infinity (but is still captured inside S), the incident field radi-
~~~+a6,(41c) ated bysure abecmsa plane wave field obliuely incident

G_ (, e e (z axis with ansanglemeasuredfom the +zsaxis. By
the law of diffraction, the diffracted rays emanating from fth

a= ~edge (z axis) due to sourc a form fth surface of a cone
G+s, )v. b, (.!t makingtesalmue cone agle wththe edge asft incident my.

a In o[her wods the: angle formed between the ddifuacted rays
8;LO, 1 + e,,)G+(8,,, ) a+(Se, ,)G_,+(oe, V,• )j1 and the -z xis is . 7b ck the reciprocity proe

(41d) for the solution of the total field which includes the diffracted

field, one would like the second source (i.e., source b) to be
a line source with e '•'C dependence so that it excites an

1 r G+(,e,,)G+(e,V6.) +(S.,V.)C+(o.,tL)] obliquely incident plane wave (as b recedes to infinity) in free
la G+8,I, )G+(,,')) ;a sp,.ceJ with an angle r -9' measured from the +z axis. ItG+(s, Pe, G+s.,Y19 G+s.,P.9 ) _(s Vb, j follows that

(41e) JJJ dv = H.e,

c s o HV'(O+,O) -S *'(O-,O)] j '

S(43b)
+ (ata; cot Zo [H.98(o0, 0)- (0-, 0 o] -

(2 VK co@2 VE(00-, 0) -(.'K'1 CO2 r)a,,E--(or, 0)}V
+ KinG1  

' where I.,, and I. awe the magnitudes of the corresponding
(42a) elric d magneti currents. Furthermor since the bound-
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ary condition at the PMC plane (y = 0) together with the (111 J. M. L Bernard, "Dilbctaoa by a moallic wedge ccu With
radiation condition (as p -. co) force the left-hand side of dilcrcmwiL Wave Motion, vol9. pp. 543-561, 1987.

f12) T. B. A. Senior. "Diffraction by a generalized iqpaiedme half plae,"
[131 R_ G. Rejas and L M4. Chlue. "Diffraction by a partially cotod electric

- ~ ik H( )1Iekcc*V cmwi half'. plae." R~adio ScL.. vol. 25. pp. 175-1811, 1990.
E..(Pb) 4 - .. Pb' 16 1 [11 R G.Rojas. "-Geealized impedance boundary comidifiams. Electro

= .[E(P' )I. -H,,.~ ~~ hz V (43c) 115 Lem'. vol. 24. pp' 1093-19.Ag 98IL G. Rojon and 7- AI-HekaiJ, "Generalized i qa~mpftecuistive bound-
ary conditions for EMd scanenag probem" Radio ScL. voL. 24. pp.
1-12. 1989.

where Pal and lb denote the the locations of sources a and b, 1161 A. Buyukaksoy. G. Uzgarea and A. SerbuiL 'Diffraction of an obliquetlyI
respctivly.incident plane wane by die discontinuity of a two pat thin dielectric

plne," JInL J. EAtg. SaL. vol. 27. no. 6, pp. 701-710, 1919.
Since both Sources a And b recede to infinity to produce 117 T. B. A. Senior. 'Skew incidence am a dielectric helf-planes Ekecew-

plane wave incident fields, the evanescent surface wave fields inagnetics. vol. 9. pp. 187-200. 1989.I
vanish at the locations of the sources. Furthermore, it is well (181 L 0. Rojes, "Scatrering by -n inhomogeneous dielectricifeense cylinder

of arbitrary cross-secron shape.-Oblique oincidence can," IEEE 11'.,
ktnown that the geometrical optics fields satisfy the reciprocity Anua PrpgL vol. 36. pp. 238-245. 1985.
condition. Therefore, it remains to be shown that the diffracted [19] H1. C. Ly. "A ITID analysis of EM diffraction by an abropt dmscontnhuity

fields satisfy condition (43c). Applying (34a) (as p - o to isi dun planar material configurations;" Ph.D. dissertation. Ohio State
(43c) yields, after some simplification, die following symmetry (20] R.0G. Rojes. -A uniform OlD analysis of the EM diffraction by
property: a thin dielctriciferrite half-plan and related configurations," Ph.D.

disaertation. Ohio State Univ., Dept~of E.E. winter 1985.I11211 K. 0. Kouiyoumrjian and P. IL Pathak. -A uniform geometrical theory ofV11  V12  diffraction for an edge in a perfectly conducting surface," Proc. IEEE.
f) 2 , V..,~ vol. 62. pp. 1448-1461. Nov. 1974.

[221,~ 9' K D1 1 (ie;w L 9') (22a] .D.Brnie "A time domain

V.. (0) 1 D2 2 O, ; 7r- 9) (4) vol. 35, pp. 305-312. Mar. 1987.I
D12~, '~;9' = V 2 1 ~, a-L9) (23] R. G. Rojas. H. C. Ly. P. H. Pathalt. and R. Tibenio, -ElecumnnagoeticVý. 0to0.; V) (0'10'b1r ) Iplane wave diffiraction by a thuee-purt dhin, plana dieloctcidmnsgnetic

where I).L is the far zone diffraction coefficient for the PMC slbIai c.vl 6 p 2718.91
bisection problem. Thus, to show that the UTD solution for the
PMC bisection problem satisfies reciprocity, it is sufficient to

verify that (44) holds for bpz. It can be shown from (34a)I
and (28b) that bn indeed satisfies the condition in (44). Hung Cam LY (S'95) was born in Saigon. Vietnam.
Furthermore, since 7D,, and V., are not changed when V' is on March 16. 1959. He received the B.S. (sumami

cmlaude), M.S., and Ph.D. degrees, all in electrical
replaced by 7r- 9', whereas V,, and V,, change sign when a, engineering. from Ohio State University. Columbus,
becomes r -9', (44) can be rewritten as (35). Note that via ~,in 1985. 1989, and 1992, respectively.I

the ualty pincple it an lso e sownthatthesoluionforFf011 October 1985 to March 1992 he was withtheduaitypricipe, t cn asobe how tht te sluton orthe EleciroScienc Laboratory at Ohio State as a
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In tin above equation H#. is the voomwo outn m eti lidd
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A solui to the coupled equations (1) and (3) using the methods 0.5 .
"of inomouts as outlined below. i001 1ino

The induced electric aus m I.. long the thin wim is expanded as

EIJr. F (0 20 40 40 0 100 120 140 140

whet IN. we unknown constants and FP(z) iwe ft piae Fig. 4. RCS of a vavehngt ole loaded with a (uii bead.
simuaodda expansion unction discussed by Richmond I ll.

Tbe induced magnetic Wild Ho. Di-ddi the ferit ring is nve- Substituting (4) and (5) into (6) and (7), fhe following set of N +1I
anted by a constan - eq:ation can be obtained.

H. = INv+IP(.0), (5) N =1,.,N (aI

whuetIN+, is the unkown coefficiemsam P(O)is constant pulse I . NIZNI .s12--N(m
finsction with unit xamtupldv in the iantval 0 < 0 :5 2w. PerforminS ow
the Galedki test on (1) and (3), one obtains the following equaions: N

F. /. EInZN+,I.. + IN+IZN+I, N+1 = VN+I. (Sb)
-jFu,(z)E:(I)dz -jF.(z)E,(Ma)dz =1

F. (-)E(z)ds 2 ." is the usual1 DImWN impedance between two aimasoidal dipoles=JF,,(z)E'(z)dz (6) [I] an

c Z,., N+ = jwpo(p, - 1)rc2iwbHg', (9)

S0 where b = a+ c. I
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The electromagnetic diffraction o-a plane wave (ainsverse electric cae) by a two-pat material
coate perfectly conducting ground plane and a matenal-ootated perfectly conadcting Wuf plane is
suklied using the RMaudhinets method. Each of te coatings is assumed to be electricaly tlhin so that

t can be replace in the analysis by a gnalgie impedac bounda condition of 0(t), wbae t Is
the corresponding co•ting thickness. To solve each ofthe boundary value iprolms completely. one
aced, to impose an additiona constuni which as determined here by machino an appoxmate
quasi-static coluron with the c hiuzhinets sunm the commoregion of overlap.
T"his requires the asymptotic evaluation of the MWa functions in various egin of
spectrl domain. Furthermore, sveal constants that in the analysis ae exactly reld to the
field and its derivatives evaluated at the edge orjunction ofthe body nder study. The backscastered
and bistati echo widths ofr a partily cos perfecty codutighal t l• ane I we copue with the
solutions developed (inluin multiple inrcti) and cp a e with n e d t

method solution. The ageement between the two solutions is excellent.

1. DINRODUCTION some terms in his solution remain unsolved. In his

The generalized impedance boundary conditions study of a coated half plane, Senior 11991] states

(GIBCs), which involve field derivatives of higher that when the GIBCs are used, reciprocity should

order than the first, have frequently been used by be explicitly imposed, and additional constraints
many authors to model thin material slabs or coated are required to ensure uniqueness. Although his
metallic surfaces in electromagnetic (era)scattering solution is still incomplete because it contains an

problems. The application of GIBCs provides more unknown constant, it correctly predicts that the
accurate models for nonmetallic surfaces than the constant is related to the value of the field at the
traditional Leontovich boundary conditions. How- edge. In the study by Rojas et a. [1991a), an

ever, difficulties arise when GIBCs are used be- additional junction condition is developed for the
cause they yield solutions which are neither unique first time for a thin magietic dielectric material
nor reciprocal even after the edge condition is following a procedure introduced by Leppington
applied. Note that there are special cases where [1963], who modeled the field uar the junction by a
solutions based on GIBCs can be found where no quasi-static solution and then matched to the exter-
"unknown constants remain and without the need to nal Wiener-Hopf solution in the region of overlap to
impose reciprocity. In several GIBC-based solu- determine the additional constraint. As shown by
tions involving magnetic dielectric materials found Rojas et al. [1991a), the additional junction condi-
in the literature, the reciprocity condition is im,- tion eliminates the need to explicitly impose reci-
p( d explicitly in the analysis and any remaining procity in the analysis, and all the unknown con-

* unknown constants am set equal to zero [Rojas and stants can be completely evaluated.
Pathak, 1969; Rojas and Choou, 1990; Volakis and In this paper the Maliuzhinets method [MalUu -
Senior, 1969). Bernard [1967) considers a conduct- nets, 19591 is employed to solve two canonicalI ins wedge covered with magnetic dielectric mate- problems involving thin material-coated metallic
vial; however, his solution is not complete because surfaces which are modeled by GIBCs of0(v) [Wein-

stein, 1969; Rojas andAl-hekaI, 1989; Rojas, 19861,
where t denotes the corres-pondng costing thick-

t1993 by the Amerin , Union. ness. Specifically, the first problem is the em dif-
POW nu r S0. fraction of a normally incident plane wave (trans-

I 0 291 verse electric ThE case) by the junction of a two-

I
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conducting (PEC) ground plane, whose geometry is
depictedI in Figure 1. Note thal a similar problem encounters. Apia. a quaui-etatic solution is dew!l-
has been solved by Rojas el t.l [1991a3 via the opd nd matchaed with the IM tinets spectral
Wiener-Hopf technique along with an approximate Nato exade n h common region of overlap
quasi-static analysis. However, this two-part prob- to deterine an additional condition, which in turn
1wm, which has not been analyzed by the Iaiii-es unqns for the Maliuzhinets-based so-I
nets method, is again considered here to demon- lution. As stated above, this last step requires the
strate the analytical procedure and the application asmtoi evaluation of th b~uzhinets ftincti
of the quasi-static aprxmto to obtain a unique in the common region of overlap. Fuarhermore inIsolution based on the Maliuzhinets method. Note contrast- to some papers found in the literature
that the term uniqueness is used here to state the based on the Maliuzhinets method, the analysis
fact that the solution does not contain any unknown presnte heme gives the exact relationship between
constants. The second problem considered here is constants that appear in the analysis and the aciedI
the em difraction of a normally incident plane wav and its derivatives evaluated at the junction or edge
(TE, case) by a thin dielectric/magnetic coated PEC of the structure under study. This is a very impor-
half plane illustrated in Figure 2, where the material tant result because it gives a physical interpretationI
coatings on the top face {x < 0, y - 0') and the to the constants that appear in the analysis. Fur6-
bottom face (x < 0, y - 0) ar e different. For this thermore, it makes it possible to compare the junc-
half plane problem, the Maliuzhinets method seem bion condition obtained by the present method saidI
to be a better and simpler approach than the th wimICTHopf techniqu [Rojas et a!., 1991.1.
Wiener-Hopf method because t late reuie In section 2 the two-part problem depicted in
matrix facorization which is much more compli- Fligure 1 is solved with the aid of the Maliuzbinets
cated than the scatar factoriuation that one usually meho afte the GIBC, of 0(t) are employed to

replace the grounded slab. it is shown that the
Spresent solution based on the Maliuizhinets ap-

proach is identical to the one based on the Wiene-I
OB1SIVATIOK Hopf technique presented by Rojs et al. [1991.1. It

PornT is also shown that the same Junction condition
obtained by Rofis et al. [1991a1 to ensuire unique-I

p mess is again obtained here, though a different
(6,,.'v,)approach is used in this study. In section3 a

Wior Wmerca) her c dffa tioDO )
soltin i otanedfo th catd M pan prob-T T " '~ lem shown in Figur 2. To test the accuracy of the

FEC t solutions obtained in this study, the scattering from
ftg 2. M@W-1coated MEC WEpane - mmy 'with plo a partially coated PEC halfplane as shown in FigureI

wvef minia Jcidamc. 3 is calculated in section 4 using the solutions of
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sections 2 and 3 (with multiple interaction includ- nets approach, the total field u can be expressed in
ed), and it is compared and shown to be in good the form of Sommerfeld mntegal as follows:
agreement with an independent moment method
(dM) solution [Newman, 1986]. Note that an e-fi 60, e) 4 an a 2d
time dependence is assumed and suppressed 2- ,( A2 2)S throughout this paper. (3,)

where the spectral function S is the unknown to beI2 TWO-PART GENERALIZED IMPEDANCE SURFACE solved, and - is the so-called twofold Sommerfeld

contour [Maiuzkinets, 1956]. Since the edge condi-Te two-part coated PEC plane shown in Figure tion requires that u be bounded at p - 0, the
I is equivalent to a two-partgeneralized impedance asymptotic behavior f Sas in-- al is given by
surface whose faces {x > 0, y - 0 and {x < Oy
0) satisfy the GIBC of 0(t). Let (pA #, z) denote the i= S(e) - coast 3b)
cylindrical coordinates with # measured from the b ,-I-.-.
+x axis. Also, let u(p, #) - Hz(p, #) be the scalar
total field at an arbitrary field point (p, #) in the Furthermore, because of the radiation condition
upper half space 0 < # < v. Then u satisfies the which requires that the scattered field u - u1 be
GIBC of 0(t) at the surfaces 0 - 0and f - ,as bounded intheregion1- w, < wv2forp--.m c,the
follows: function S(a) is regular in the strip Re a• suw2

P [i 2iexcept that it has a first-order pole at a - W -2I 1 82 1 • +bw 1.)- in that strip to ensure the presence of the incident
[1i P (ý'6 C),4 0"4 field gliven in (2).

(0) Applying (3a) in (Ia) yields the following integral

where equations:

aij =sin .a.•+sin,, (.b.2) f L(sin a ± sin '.. Xsin a *Sin Vb.)

bin Br,,j,,-1 $S(a +t) exp (-Ap cm a) de - O. (4a)bl,2 - sin P.,.,a Sin Vb,, 00 2)1
It follows from (3b) that the integrands in (4a)

Il2_a 1 excluding the exponential term have the asymptotic=- ,, M L2)- b1. (1d) behavior in the order 0(e*n 4) as ILm 4 _-. w. eTusR 2 1 according to Maluzhinets [1958], (4a) is trans-

In addition to the boundary condition (la), u must formed into the following inhomogeneous func-
also satisfy the scalar two-dimensional Helmholtz tional difference equations for S(e):
equation and the radiation and edge conditions. s a(Ai1 + Aw cos a) - (sin a :t sin )II a
2. . Formulation of Malinjinets spectral
finction * (sine a :tsin -(sina:t (d a - in P..

For a plane wave normally incident to the z axis (

at an angle #' measured from the +x-axis, the
incident field u1 is given by -(sin a: sin vl)S -a ± , (4b)

ikP,*)- exp I(k cos(*-*')] O< , *'w; whereA I.A 2 , A 3 ,1andA 4 areCOnstants. Nfallof

(2) these constants vanish, (4b) would become two
homogeneous functional equations for S(a). Let

in which the magnitude of the incident field at the p(a) be a solution for these homogeneous functional
origin is assumed to be unity. Following Maluzri- equations which is given byI

I
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(QM a. .h)V(-a. P,) A particular slution of(7b) is given by
p(a) + I'f'(,,, -s,.)'I(-a, -,,) (- q(a + u) i

Note that the ftunctions T(a, - v.) are put in the -p(aYp(a+2w)

denominator because Re ,e < 0 in contrast to Inother wordsarl ionfor(4b) is (a)
Re !, > 0 as seen from (Id)(a detailed discuss= - p(a)7,(a) which must also satisfy the edge con- I
is given by Bernard [1987]). It can be shown that the dition (3b); and this requires that
function *P(a, P can be expressed as

V'(a, r,) - *.tl(a + v - P)*,)2(a + P), (Sb) A3 - A.I
S.(a) can then be written explicitly as

where #W2(a) is a special case of the well-known c

Maliuzhinets function #,(a) for o - sf2. Note that S,(a) - p(a)r,(a) - [A2 (co2 a

**(a) is an even function of a, and its properties are ,csa+ l C52a+a osummarized by Maliuzhinets [1959]. One of these +., coo a + b1) + A,(cos2 a + as cos a
properties is + b2)Y[2(a1 - a2Xuin2 a - com2a,)]

.2) ctni . (6a) A3 sin ab 2 -b,
2 2 a - co52aP) cos a +a2 at). (Sb)

Applying (6a) with 0 -= 2 to (5a), it is easily
shown that p(a) indeed satisfies the homogeneous Cossa = - + (2b) -alb,
functional equations. It also follows from (6a) that a2 -- l

p(a - W) The most general solution for the homogeneous
p(a + Wr) (cos a + sin P., Xcos a + sin ',,b Xcos a functional equations is given by p(a)o(a), where

o(a) satisfies the following difference equations:- gin P,.Xcos a - sin 1%b )/[(os a - &W P.., Xcos a( ) ( 2

- sin r*b2Xcos a + sin P..,Xcos a + sin )]. ((b) ( ) - (-4 t (9a)

Since the closest zeros and poles to the point a = 0 Hence the most general expression for S(a) that 3
of the Maliuzhinets function *.,z(a) are, a = :±-3w2 satisfies (4b) is given by
and a = ±5w?2, respectively [Maliuzhinets, 19591, it 5(a) - S,(a) + p(a)o(a). (9b)
follows from (5) that p(a) is free of poles and zeros I
in the strip IRe aI s w2. Thus the general solution It is easy to verify that any functionftsin a) can be
that satisfies (4b) can be expressed as a solution of (9a). Thus, to reproduce the incident

S(a) - p(a)i(a). (7a) field ul given in (2), a(a) may be of the form 3
Substituting (7a) into (4b), combining the two equa- i.(a) - -F (9s)

tions of (4b), and applying the identity (6b) yields - a + cos (90

S(a + v) - r(a - ,v) - -q(a), (7b) However, it is seen from (3b) that So(a) has two !
poles at a - -t(w*2 - a,), which violate the

cos a condition that S(a) has only a smple pole at a = 4#'
00a -•a .•) [[(A 2 - A4 sin aXcos a - sin a,.,) - ws2and is otherwise regular in the strip Re ai•S

p(a - v) wf2. Thus the second term p(a)o(a) of (9b) com-
" (cos a - sin vb,) + (AI + As dn a) bited with S,(a) must force the residues of S(a) to

zero at a- :t2- a) by adjusting the constants
" (cos a-sin V., )(cos a -sin Pb,)] AI, A 2 , and A 3 . Furthermore, p(a) has two non-

physical poles at a - "±(3i2 + v,,,), which when #
"-[(cms a - sin a%)(€os a - sin b,•) is close to 0 or v, may be captured if the Sommer-

- feld contour y is deformed into steepest descent I
" (cos a + sin P,,, Xcos a + in va,,)1 (7c) paths. Since the residues of these poles introduce

It

I
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nonphysical exponentially growing fields, they must Incorporating (10b), (9d). (Sb), and (5e) into (9b)be suppressed by setting the residues ofp(a)voa) to yields
zero at a - ±(3w/2 + a,1,). Consequently, one

obtains the following expreson for o(a): SW - I- A3 _1 0b2 - )

01a) - , _ w si 2 • _o,) A2(cs 2 a +a, coso, +b 2)+A,(cas 2 +82 cosa +6)
__ a2(al "-)

(s a + Co.s .. Xi a - cos v.,)
(Cos W' - Cos V.,Xcos #" + Cos V..) + __~) si CS cs . + C1

sin a -+ cs #' + C1, (9] V+ -Z ' Ma ij (Ila)

where the constant Cis added so that (3b) holds. At arn) -h 2(ra)k.(-o),/ 1rn) - 4',(n, a6.)tI, -s
this point, C as well as A, (i - 1, 2, 3) are still
unknown, and thus the total field u computed from - """-) (11b)
S(a) is not unique unless these constants can bespecified. Although A1, i - I, 2, 3 nee n be To show that the constants At,A 2 , and A3 are
knownetoi otid A theoutgoh of for 1 , 0,3neen beas related to the field u and its derivatives at theknown to obtain the solution of u for p 0• 0 because junction, a scheme similar to that of Ma~uzhiets

the function S.(a) has neither residue nor steepest Ju6ctn a e semilar o t at o rite
descent path (SDP) contributions to u when y [1956 can be followed, namely, one may write
(3a) is deformed into steepest descent paths, they
are computed here because they are related to the u(O, )- Hlim iv $ • )
field behavior at p - 0. The conditions discussed
above which require the residues of S(a) be zero at
a - ±(02 - a,) can be used to obtain C in terms of £(+#v l'*L ad (12•)
A,. but more information is needed before these 2A
constants are specified in terms of known parame-
ters. where "n is the upper loop of the contour -'.

Before proceeding further, it is convenient to Applying (Ila) to (12a) and letting the horizontal
rewrite the expression of S(a). Note that the Mali- part of yt tend to infinity (that is, Ya E yi, Im a-.*

uzhinets function **(a) has the following property w), also noting that S(m) - -S(-iw) [Maliuzhinets,
[Maluzhinets, 1959]: 19581, one obtains

2 a a(0, *) - 21S(-) - -A 3 , (12b)
,a +.!)#* a - = ;, •. (t0a)I~ 2*r~)*r~ ) [#'6(2)]' 

,,(Ir).
It follows from (10a) (with P - f2) and (5b) that Al +A 2  [ 2.-)i2(al,-.a2)" +!f (12c)

VW(' -W/2M - + w/2, -r..) 2)) • -
i 9*(a. -. ,(-.-,,)Similarly,

w/2(, -w - v./2(-e, - w - P,%) I 2)

(cos ' - cos a,'Xcos ' + cos Va.,)(sin a + we V., On a - Cos V..,) (13a))•)
)- (-ik cs 0) exp (-Lkp cos a) do. (13)
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1tinS the horzota part of y, tendl to inftyand ¥l ( " [ m•

applying (b)to (13)with 0 and =v, -5 a +
respectively, leads to [ I

S= -Ai, &it- Ia •, I.(€:s a•(• -t.(14e)

At this point, an additional condition is readily
2.2. Deteriation o0 eobtained if one matches (14e) with the asymptotic

form of S(a + w2), where S(a) is defined in (Ila),

As stated earlier, an approximate quasi-static within the region of overlap I C Icos aj C
solution can be used to obtain the additional infor- (0 )-'. Applying (36) of the appendix to (Ila)
mation which is required for the determination of c with a being replaced by a + w2, one obtains U
in (Ila) and A1 (i - 1, 2, 3). Since the geometry
shown in Figure I is the same as the even configu- ( A ± 3  A2 +A,
ration given by Rojas et al. [1991a], the quasi-static S 2 -) -a2field obtained by Rojas et al. [1991a] can be applied
here; namely, iC(a,. 2 )' *.ai(j tfr

I UT 4h ! . .

;i.j Ijcpck'. (14a) ai +.a2A, _mIn auO. (1,a)a4 j2(,, - 2) cosa

Note that the subscript q is used to denote a -

quasi-static field. The spectral function Sq orre- Comparing (15a) and (14e), it is evident that they
sponding to Uq can be obtained from the inversion can only be matched to each other if the coefficient
ofthe Sommerfeld integral (3a) for Re (-'kcos a)> of the extra term of (cos a)-I vanishes; namely, I
0 [MaIiuzhiinets, 1958], which is given by

2p ksinafP c s )dp. aA2 +a2 A1  -0, (15b)
Sq a + L ,• )ep(pcsa p

(14b) or

Evaluating (14b) with uq given in (14a) yields Ir 1+ _. 1 0  (ISc) I
I Aqr +~ 1B.;P

2 ) -- - 2 2k S a V a, Note that (15c) is the smne as the junction condition

)obtained by Rojas et al. [1991a]. Applying (l1b) and
;_-) In (Cos 011 , ,clcos alc(ksw)-' (04c) (12c) to (Ila), and setting the residues of S(a) tozero at a -*(uf2 - ar), one finally obtains the

where A' is a constant resulting from the transform constants C, Al, A 2 , and A 3 as follows:
O the term of In p. Noting that

sin aC - n #[(a) - cos 0%]. 1
COSa 1'\1

I =os al:m 1, (14d) Ain- x 4:a . (l1d)

(14c) can be rewritten as 2hk(#'!2)

• I
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AI~~~a~h) - c,,, _________ Md(**), -(a!2)

M~ap) = Cos a le

* - a exp [,ik cos (a - )da, (16b)

A3  C( 12f* t +~f h~(a 2)) S Ra. S m -S (. Lr),43 - -a ,n2 + 11 /[4(2 -a,)] 2

3sin#'[(a2 -a,)sin a+b 2 _b2 V{h(*',_2) -ba -a2)['rw (.•)] ma sin*

a(15f) 2________ 1(k
[h(2~ ~~ CO) + 6p2.csacs#+ c05 * J a) 1c

A unique solution for u(p, #) can now be determined
by evaluating the integral in (3a) with $(a) given in Note that the identity (10a) has been used to obtain
(I la) and C andAi given in (15). Since the exponential (16c). It is clearly seen from (16c) that the function
function in (3a), that is, exp (-ikp cos a), possesses 9(a, W) is symmetric in a and #' as required by the
two isolated, simple saddle points at a = wr and a - reciprocity property. Furthernore, it can be shown3-win the region IRe tý :s w, the Sommerfeld integM- from the definition of the Maliuzbinets function
tion contour y can be deformed into two steepest *,r2(a) [Maliuzminets, 1959] that 9(a, #') given in
descent paths SDP(±ir) passing through these saddle (16c) is exactly the same as the even symmetric
points. Furthermore, the spectral finction S(a + # - spectral function based on the Wiener-Hopf tech-
-f2) in (3a) is analytic everywhere except that it has nique obtained by Rojas et al. [1991a]. Likewise, it
several isolated simple poles. Therefore the total field can also be shown that the reflected and surface
Op, 0) evaluated from (3a) consists of the integral wave fields obtained here are the same as the
contribution from the integration paths SDP(±)w, corresponding fields given by Rojas et al. [1991a].
which gives rise to the diffacted field ud, and the
residue contributions from the poles of S(a + 4 - vi2) 3. GENERALIZED IMPEDANCE HALF PLANE
if they are captured in the deformation of 'y into
SDP(± wt). The residues from the real poles give rise to As indicated at the introduction, the half plane
the incident field ul and reflected field um, whereas the problem has also been considered by Volakis and
residues from the complex poles contribute to the Senior [1989] (based on Maliuzhinets method) for
surface wave field u'. In other words, the diffracted different coatings on both faces of the half plane and
field ud is given by by Rojas and Chou [1990] (based on the Wiener-SI ) # - the half plane. In these two solutions, the reciproc-

,)+,- ity condition is imposed in the analysis, and the
remaining unknown constant is set equal to zero. In

exp -l~ co a)da ( ~ a * -this section, the solution to the two-dimensional
Sexp (-Ikp hos a) da + Mlf plane problem, whose geometry is depcted in

2)) Figure 2, is obtained using the Maliuzhinets method

1 combined with the quasi-static analysis, and it is
-•exp (-lkp cos )da) . (16a) rigorously shown that the remaining constant is not

J equal to zero, except for special cases. With the
application of the GIBC of 0(t), the maerial-coated

By shifting the steepest descent paths SDP(w) and half plane is equivalent to a generalized impedance
SDP(- w) to a new path SDP(W) with a saddle point half plane. Let 0(p, #) - Hz(p, #) be the total field

at 0, where 0 s0•,•w, (16a) can be rewritten as at an arbitrary field point (p, )in the entire free

I
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space i1 < v. The feld Up, ) satisfles the scalar sin e(Xw + XA cos a) = (un a snI ..,. X-- a
twodimensional Helmholtz equation, the radiation
condition, the edge condition, and the GIBC of 0(t) a sin Pb,.,"a ± w) - (sin a z s•n ,, Xsmn a
at the surfaces of the half plane # - ± was follows: (

r' 2in b.,g(- a ± w ). 2)

[2p- ; i ýwa # + (I + b4 )+(p, 4) O, (17) where A AT2, A3, aN A are constants. The
solution S(a) for (20) can be found following the

*, ±W v same procedure given in the previous section. Thus
where the parameters a1/ = sin P,9 + sin Pb and the first step is to obtain a solution F(a) for the
b -- sin Pe* sin rb' were defined in (1). As in the homogeneous functional equations (equation (20)
two-part probem discussed in the previous section, with the constants AX, i - 1, 2, 3, 4, set equal to
a quasi-static approximation for the total field in the zero); namely.
neighborhood of the edge will be developed so that i
an additional condition is obtained to yield a unique P(a) f .,)#(-a(21a)
solution for 9(p, #). ) (a. -m.,(-a. -, )re

3. 1. Formulation of the Malluzhinets spectral / w \ #
function t(a, 0)-. a + LW- v) +a+ r). (21b)

For the half plane geometry excited by a normally
incident plane wave as depicted in Figure 2, the GO Note that *'ra) is the well-known Maliuzhinets half

(geometrical optics) incident field at a field point (p, plane function [Maliuzhinets, 1959]. It follows from
#) with an incident angle #' measured from the +x the identity (6a) (with 0 - vr) that
axis is given by P(a - 2w)') n
RV. #') - exp [-ikp cos (4 -4')Iu(.0 - #1' + , A #a + 20)"•a-m ,,X .. •,X

- U( - 0' - W&)] , W<C < , (18) - sin V.2 Xsin a - sin b)/[(sin a + sin 3.,)
where U is the unit step function. Note that the
magnitude of the GO incident field at the edge is -(sin a + sin ivb, Xsin a + sin a, Xsina
assumed to be unity. Note also that 9i exists only in
the lit region, where 1# - #'I s r. Following + sin ,b)J. (21c) i
Maliuzhinets approach, a can be expressed as the
Sommerfeld integral: Furthermore, since the closest zeros and poles to

the point a - 0 of the Maliuzhinets function #,(a)
iP, C) - exp (-Lk cos a)•'( + #) da, (19a) we a - 5= -0- rs pectively [M -

L u~lnet$, 1959], j~a) is five of poles and zeros in the
strip IRe ai s w. Thus the most general solution that

where v is the twofold Sommerfeld contour. Be- satisfies (20) can be expressed as U
cause of the radiation condition, the spectral func-
tion Sl(a) is regular in the strip JRe ae s v except that Sr(a) - I,(a) + P(a)(a), (22a)
it has a first-order pole at a = 4' to produce the I
incident field a'. Furthermore, it follows from the where 9.(a) is a particular solution of (20) given by
edge condition that S.(a) - P(a)W.(a1 _ [•A,(sin 2 a - a, sin a + b2 )

lir M(a) - const. (19b) -A(sn 2 a+a, sin a+bj)j[2(aj +a 2 Xsin2 a

As in section 2, after applying the boundary condi. - sin2 a I
tion in (17), (19a) becomes an integral equation which
can be transformed into the inhomogeneous func- + X3 cos a ( b, b(
tional difference equations for 9(a) as follows: 2(sin a -_W2 a.) (s ai+-aJ )

I
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a1b2 + a2b, 2c IfLl I(ksiný 0. ( t+a 2201 " (in2 ws ( 2301
a, +a2 \2 2

Note that XT3 - X4 due to the edge condition (19b). It can be shown from (10a) (with - w) and (2 1b)
The function a(a) satisfies the homogeneous differ- that
ence equation -w). - (-V,"' )

Ma -- ,r) - &(- a :t ,r) - 0. C23a) #(a. - , ( - Paz,, )

Hence b(a) is a function of sin a/2. Since the first
term go(a) in (22a) has four poles at a - -±-a. and C(a, -w - v,,)f(-a, -r -V,)

"-t(v - a.) in the strip lRe al < w, which violate the "(,', - - ,,,, (-,', -, -

condition that ff(a) is regular in the strip IRe ai s v
except at the simple pole a - 0', the second term P, ., ,
j5(a)8(a) in (22a) must also have poles at a - ±a, (sin f+ sin -si -n-- sin
and -(if - a,) so that the sum of these two terms 2 2 2 (24a)
yields zero residues at these unwanted poles by a a' P4(
adjusting the constants ,,, i = 1, 2, 3. Furthermore, 2 + 2 si \ - sm -

p(a) possesses two nonphysical poles at a = -(2(r

+ ',,_), which may be captured and introduce Incorporating (24a), (23b), (22b), and (21a) into
exponentially growing fields if the integration con- (22 a) yields
tour 'is deformed into steepest descent paths. Thus
taking into account the above conditions and noting
that ama) must have a form to reproduce the inci- X3 COSa - b2\
dent field 9' given in (18), one obtains )sin' a si2 a, 2 (sin a + l + a2)

I
&(a) #($,)(sin 2 a - sin 2 a.) Al(Sin2 a - a2sna + b2) - X2(sin 2 a +a, sin a + bh)

+ I 2)

1sin -+ sin vaisin sin 14

sin+ -T t, - (m2) .b,
T2

2 -' 2

2I 6 . , 'Ejahi-ah.a

ters COv oinng C, #" -
s an o(sn 22 s a a

C-Sm (Si 2.2J -(0 S)ii(Ln2 (2.)

si -+ C3m si2 a- (24b)

+ C, + C2 sin t + C3 ai• (23b)whr

* •(a, vb,)f(a. -,r - v,,,). (240:
Note that the terms involving C1, i - 1, 2, 3, we added
so that (19b,) is satisfied. Note also that (sin 2 a - sin2 As in section 2, it can be shown that XI', X2, and
cr.) is itself a function of sin ot2 because X3 werelaited to the field if and its derivatives at the

• +.," - sn" o "-4(sn• _._ in••2)edge as follows:

S2 .2) (0, +) ,2t,0(i) - X3•, (25a)
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C3 -,. (¢;) 9 .... ..
rkf1S

Al -4 2-

2(an + a2) 16A-(W) (25b) . ",

/a, (P - 0 \A12- ( 5

S(5c) 1- -- --

3.2. Quasi-Static analysis .

As in the two-part problem discussed in section 2, ' I
additional information is also required for the half (.1) T
plane problem before a unique solution for 0 can be -Xe \ /

obtained. The new piece of information can be / If

found by matching the result of the analysis above
with the corresponding quasi-static solution which - - /
is approximated in the neighborhood of the edge of
the coated half plane. Following the procedure L3
given by Rojas et al. [1991a] and Leppington [1983],
the quasi-static total field aq valid in the region t 112 Fig. 4. lntemtmion contour for the determination of n
-C p -C k-1 for the present half plane problem may (01.2 -)

be expressed as

04 - A-, + A,, (26 a)

i - X + Q In p, P 1'/2', (26b) 42 - 0 fqt2 - 0, 42 - (.,) n di, (26e)

where Xq, ffq, and 1 are constants. As in the /

quasi-static analysis by Rojas et al. [1991a), the where 42 is the integral along the free space-
matching constants Xq and ffq are of no concern material 2 boundary. Likewise, integrating (26c)
here, and the key step is to determine 97 which can along the closed contour L 3 in free space and applying
be accomplished by using the integral form of the boundary condition which requires that the tan- I
Laplace's equation, namely, gential fields be continuous at the free space-material

interfaces, one obtains (as x.(,1t,2 -

Va. h' d -dl = 0. (26c) 42 41
L anL .2a+ t ~l-0 W

C,'2 6r,

where h' is the outer normal of a closed contour L. Incorporating (26d) and (26e) into (26f) yields a 3
Applying (26c) inside material I (coating on the top simple expression for Q as
face of the PEC half plane) with the conto", of
integration LI as illustrated in Figure 4, one obtains i ) (26).•)

(-z.4 .) Jafq
00)qti0, 4;n7 d, (26d) where a, and a 2 were defined in (1b). With a being

X.11. .ine.a determined, the asymptotic behavior of 0 q as pt1,2

where 41 is an integral along the free space-material -# w is specified, and no further analysis is required.

I boundary, and the integral along the conducting 3.3. Determination of the unique solution
half plane is exactly zero as a result of the boundary 3
condition satisfied by a. on a PEC surface. Inte- Following the same procedure used in section 2,
grating (26c) along a similar contour inside material the approximate expression for the spectral func-
coating 2, where L2 is depicted in Figure 4, yields tion 9q(a "t a) corresponding to 0q is given by 3

I
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3(A X I fq ia ________2,-. .- -ir + -;(, - a,)R( - )
- +CO'

+ ,I ma O -lC cos a[ lC(kte 2)-
1,

;2 C3 =-si #'I 82)]} (27a) 'E•(a.)G(a,) + - ao)C(u - =o )

where k is a constant resulting from the transform 2 Ii(a,)f(a0 ) + A'(i. - ao)/(wr - a.)
of the term In p. Applying (38) of the appendix to
(24b) with a replaced by a + it, one obtains the C3asymptotic form for 9'(a + vr) in the region 1IC

Icos al -C (kt 1/2)- as follows: AT1,2 = "(4') ' (28d)

2(aa+ v)-) ±- - const (a Ia2)W 2(a +-a2 ) -
2 2(a + a2) [cos a -2

i('1 a 2 +a2XA3 , + a2) Sin a, + b, - b2Z -- + L2a, _L ° _ o,+..", (27b)
2 wr ( a , a2 / 1 2 ( a I+ a 2 ) c o s- I) a 0oa 0 ) + 2 / l (a o ) c o s

I Im a 0• O. " k(Oa)R(a0 ) + i(w - a))R(w - a.) ' (28')

To match (27b) with (27a), it is necessary that the where
coefficient of the extra term of (cos a) -j be zero;
that is,/(.

tasR(a) 2 2X, cos a + (I +X 2)

,X, + X, = 0, or, ,-0 + 20. 2 2

a ,-, -ap a2 aPo#P -O*sin + (X, +X 3)' (29a)

(27c)

All the unknown constants in (24b) can now be d(a) -- Cos a + iTiXi cos a sin
completely specified from the conditions (27c) and 2
(25b) together with the requirement that the resi-
dues of5(a) be zero at the unwanted poles a = ±a. + 2 1 2(XI + X 3) sin - + I + X2 + 2X 4 ; (29b)
and ±(ir - a.) as discussed earlier. After some
manipulation with the aid of the Maliuzhinets func-
tions' properties given in (6a) and (10a), one obtains X) - to, + Gb - to. - fb=, X4 - is, G, Ca, Cb,.

i4' 4(29c)
Ca -sn4 2 -____ 0
C 1 - sin 'c € 2 2 X2 - ., Gb, + to, G, - (C., + fb,)(fa, + G,),

* i(a°)G(a°) sin2  + (R - a.)6(,r - a0 ) cos2 a0  (29d)

U E(ao)R/(") + - (- X3 = Ca, Cb, ((a, + Gb,) - Ca, (b, (a,2 + fb,), (29e)

e,,.,'cos W+1. + ",j\ - a.) ---.
(28a) (i 2/ Pal

t.,cs (4 Cb,, oS (

C C O f cos -[cosf (29f)

I
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With the constants C, and Ai determined above, a Employing the identity (10a) together with some i
unique solution for the total field 4(p, 4) is corn- trigonometric relations in (32 b), and after a tedious

pletely specified by evaluating the Sommerfeld in- work of simplification, yields

tegral (19a).

3.4. Asymptotic analysis ,

By deforming the contour V into two steepest i

descent paths SDP(wr) and SDP(-ir), the total field 3')
i(p, 4') evaluated from the integral (19a) is given by - s Cos -F [;o a T4)+ cs

ad, 4, = ai(P, 0) + at(,, 4,) + a-(P, 4,) 
I

+ U d(p, #), -,'r < #, #,' <)j; (30) in which

where a! and a' are the GO incident and reflected pI 4,) ! + X2 + 2X 4 + I Cos a cos 4,

fields, respectively, contributed by the residues 2
from the real poles of the integrad in (19a); 91 is (o "2

the surface wave field contributed by the residues + (1 s a sin ±" + cos #' sin +2(1

from the complex poles, and fid is the diffracted 2ko 2

field which is the integral contribution from the

integration paths SDP(± v). + ar2) sin 2sin f 2 sin a+sin-

As can be seen from the expresion (24b), there is 2 i s in(X1 +X 3 s + 2

a simple real pole from S(a + 4#) at a = 4,-. 2/3

which is located within the strip IRe al -ir if 14" -

0 :s <r. The residue contribution from this pole kao)R(ao) + F(r- ao)V(w- a,) -

clearly produces the incident field ii' defined in (18). 0 0 f~r-a,' (2e)

In addition, f(a + 4') has two other real poles at )(a.)R(ao) + Urv- ao)R(w - a.)'

a = t21r - (4 + 0') which may also be captured in
the deformation of the contour y into SDP(±w w). The COS a + a -

residue contribution from these two poles intro- 2 2 a
duces the reflected field 17, which is given by

9'(p, 4') = [R 1(40')U(40 +4, - #) + R22(-4#') -.- L2 cos a)(XI + X3) +(I + X2 + 2X4),

- U(-40 - 4' - wr)] exp {-ikp cos (4, + 4")}, (31a) (3,f)

where the reflection coefficients R, and R 2 are 
I

defnedaswhere X,, i = 1, 2, 3,4, were defined in (29cN-29f).

defined.as The function 9(a, 4') exhibits the reciprocity prop-

(sin 4,' - sin v,,.)(sin 4- sin vb,,) erty as shown by the symmetry in a and 4'. It is

Ss-i-n C + sin P.,.,)(sin 0' + sin v,,,)f noted that (32c) has a similar form as the result

(31b) developed by Senior [1991], except that (32c) is

completely specified while Senior's solution still has

As stated earlier in the two-part problem, the unknown constant to be determined by an addi-

steepest descent paths SDP(± vt) may be shifted to a tional constraint. Furthermore, in contrast to the

new path SDP(4'J by changing variables, and the analysis by Senior (19911, where the reciprocity con-

diffracted field a. is then given by dition is explicitly imposed in the analysis, the present

analysis did not enforce reciprocity a priori, yet it

04 -0) C(a, 4-0) yielded a unique solution which automatically satis-

21r-i 5D0(#) fies reciprocity. Keeping only the leading term of

-exp [ikp cos (a - ')) da, (32a) order (kp)-112 , the asymptotic evaluation of (32a)

recovers the high-frequency edge diffracted field,

C(a, 40) " f(a + P) - SAa - V). (32b) namely

I
• m , I I I I I I l l l I |
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0 - --1-- -- . . , - - v, ,2 - - (33d)

UTD 1 (- R '), 0% Os<'< V

*~alo oil.) _(33e)__ __

'- I ! +3-.-k F34d,-as'
..... %. . .. . 4.. . .,' "P(-{r- + Vb} , -9 1

0 s0 W CoA•-sin (P,,,2)1 + (a)
"4°o m 0 (degree) 2os # 4, -Cos Vba(k,) ad•o ,,ith.

20 (33f)
10 ---- --- Note that Pi, i = 1, 2, 3, 4, are the residues of the

0 function .. a, 46 at the corresponding poles 5i,
-------- except when -v < < 0 the residue F, is evalu-

"A .1D ..N ........... 7 .ated at a = -ir - 46' instead of &t. Also,the
S- - - function F(x) present in the residue terms of (33b) is

= I the well-known transition function [Kouyounjian
0 d30-OS- and Pathak, 1974]. Finally, the surface wave field

,40 # ..-2+i÷J #SVW ' 'is given by

kmt,-OD*?. **=4 g "'(, 4,) = F,,. exp [-ikp cos (Pb, - 4,)]U(4 - L,'
() + F,,, exp [-ikp cos 0l + #)]U(,F, 2 - 4), (34a)

(b) Bas.attec echo wdth.

Fig. 5. UTD versus MM results for the Seometry shown in •m=±• e(b)-av•Figure 3. + Re (Pb,) - accos cosh (Irm Pb)

(34b)

ad(p -.0) _ e*) and Fsw, = F3 , F•2, = -F4. Note that Fsw, are the-V(p,) D(, '; POW., vb), (33a) residues of 9i(a + #) at the surface wave poles a =
--(2ur + Pb,) - #.

with the uniform diffraction coefficient D given by 4. NUMERICAL RESULTS

U er As stated earlier, the solution for the two-part
D(#, 4#'; v.,I, VbW) - -- _(42 4,) problem developed in section 2 based on Maliuzhi-

i Lnets method is identical to the known result given

by Rojas et al. [1991a] based on the Wiener-Hopf
1 -F(-2Ap•)[" technique. The accuracy of that solution has beenS+ -F 2 4 11 (33b) verified [Rojas el al., 1991a, b]. Thus it remains to

-1 illustrate the UTD solution developed in section 3
for the mIterial-oated PEC half plane excited by a

fg - sin jai-- i- 1, 2, 3,4, (33c) normally incident plane wave of TE, polarization.
F ' Here a few far zone scatter patterns for the partially

coated half plane geometry depicted in Figure 3 are
S= 4,r- ', * ,r +4,', •@3 + rb,, presented and compared with a corresponding in-I

U
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included in Figure 5 to illustrate the importance of
fl~~Q the multiply difrated fields.

To further examine the usefulness of the UTDI
I _ solution for small strip widths d, and d2, the UTD

-7based bistatic and backscatter echo widths are

-10 compared with the MM in Figure 7 where dd 2
-~~~0 1. AAOl with other parameters keeping the initial va]-

-~ F ~ 1 - Imaterial parameters, the UTD results are very3
-301110 ' - ------- - accurate even for such small strip widths by inciud-

________________ing up to third-order multiple diffraction. As men-
10 UO go 240 J tioned earlier, the boundary conditions used to

0 (degree) develop the UTD solution are valid only for thinI
(a) istaic eho wdt- coatings. Thus in Figure 8 the bistatic and backscat-

-------- ter echo widths are calculated for not very thin
coatings; namely, i .OAt ho h

-. limitation of the GIBCs of 0(t). Note that with the
characteristics of the material used here, 0.05A

ID corresponds to 0.1 24, where Ad is the wavelength

-40 go bottom coatloianq- -20-

(degree) 0I

(b) 3.chsattet echo width.-

Fig. 6. UTD versus MM results for the geometry shown in M:__ _IdI
dependent MM/Green's function solution given by .U

Newman [1986]. The results based on UTD are degree) 20 3
computed with all multiply diffracted and surface 20()16aicSowdh
wave field components up to third order included. 2

Note that the procedure used to obtain these mul- V ----- i
tiply diffracted and surface wave fields is based on W U
the spectrally extended ray method developed by -

<_
Tiberic and Kouyounjian [1979, 1982, 1984], which
has been applied to a resistive strip [Herman and
Volakis, 19871, and it is described in detail by Rojas -20

and Chou [1990] and Rojas et al. [1991b], where 0 -3 -aA 4-
some multiple diffraction mechanisms not consid-
ened by previous authors are discussed. The expres- -0 __ ____

sions for the multiply diffracted fields of the par- ______

tially coated half plane can be found in the work by 0 s o Q0 24I0D Y

Ly 11992]. It is shown in Figures 5 and 6 that the
UTD solution agrees very well with the MM result (b) Backmaeatl echo width.

for both bistatic and backscatter patterns. The Fig. 7. U7D vesu MM resuts for the poer sdown inI
results based only on single edge diffraction are also Figure 3 with d, - d2 - M.IA.

I
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inside the material. Although the GIBCs of 0(s) are times referred to as a contact condition, in addition
not very accurate for these values of t, and 12, it to the boundary and radiation conditions as well as
seems that the agreement of the UTD solution with the edge condition. The junction condition is devel-
the MM data in Figure 8 is still reasonable. oped by matching a quasi-static solution with theI corresponding Maliuzhinets solution in their corn-

S. CONCLUSIONS mon region of overlap near the edge (or junction).
The final solutions thus obtained do not contain any

The Maliuzhinets method is employed in this unknown constants and automatically satisfy the
paper to analyze two diffraction problems involving reciprocity condition.
thin material-coated metallic surfaces. Each of the It is noted that expressions for the constants A1
electrically thin material coatings is modeled by a and X, (i = 1, 2, 3), which appear in sections 2 and
GIBC of 0(t), where t denotes the thickness of the 3, respectively, are developed here and are also
corresponding material layer. The application of expressed in terms of the field and its derivatives
GIBCs of 0(t) (for magnetic dielectric materials) evaluated at the junction or edge of the scatterer.I which involve second-order derivatives of the fields This is an important step because it gives a physical
creates difficulties because it yields solutions which interpretation to these constants and allows the
are neither unique nor reciprocal even after the comparison of one of the junction conditions devel-
edge condition has been applied. This difficulty is oped here to the one obtained by means of the
solved here by imposing ajunction condition, some- Wiener-Hopf technique [Rojas et al., 1991a].

Finally, the accuracy of the solutions developed
here is assessed by considering the bistatic and

20_____ backscattered echo width of a partially coated half

I.. .. . .......... plane. By including multiple interactions up to third
.... ..... . . . order, the UTD solutions provide results which are

W -in good agreement with corresponding moment
.. 0 .. method results.

n . 2- APPENDIX

S0 - C-"4,. " . ---£ (d..o .o Approximate expressions valid in the region I c
- ,- , l ...... .os aj : (kt 12)- are obtained for the functions

. O"S• '- , ix, ! •h(a + iw2) and Aka + ir) defined in (01 b) and (24c),
---- - -A respectively ic 1 20rWespectoly. Since a1/2, which is defined in (Ib), is
(degree) proportional to (kt,12)- 1, the condition Jcos al -C

(a) B, ittic ech.widh. w--l,21 also implies Icos al -c (k1i/ 2)'.
S2K0,

. .Approximation for h(a + =2) h2(1 + ii72)--I- ,h 
l(-, - w,2)=

,-0 Since the Maliuzhinets function *,n2(a) satisfies
- __" _____ ____ the identity (10a), it can be shown that

n2 a + f2h2O% /S.40J - t
o .- 0* $%D"j 2 244

0 so oo 30 30 • ( Sin a - 02 sin a + b 2) - i l. 1
"•°o m u0 (diegree)

(b) Deucbcmtta echo width.

Fig. I. UTD versus MM results for the peometry shown in "a2 sina COS,, a 2.. (35a)
Figure 3 with t, =2 0.05A. 2

I !4 

a
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fction h2(a + w.2) has az . ,, -- 'zero at k2 '

Ia21-. m. Likewise, h2(-a - w2) pssesses a zero
atea -w- Ifb-- -w a a2 l-, .. Hence it follows 2 r !from (35a) that -cos C ÷+ V. Jalcc jalca1. (35k)

*+l "V

i4( + ']j-r' (352 Multiplying (35h)-(359 ) and retaining the first two
h~ 2(a + -4 ki 421Co a .105b) terms yields

2ý h•.,. +ý) ---W*l",a -! " 'r l 7 -[1 -aInI

The approximation given above can be improved by I! !\1
adding a second term to (35b), namely, (a-,a!)I' 'Cfcos .I'C(kttn)-f . (36)

,r\ i 1Approx'airion for rX + W) - 'V a+ WWf2 (-a
T(e 71 Ma[iuzhinets function *,(a) has the follow-

I + " (35c) ing property [Maliuz)inets, 1959):
where [Hý(e)] (a) 1. Substituting (35c) into (35a) #.(a + w).(a- - )- [Ir(,)]f2*,r2(*). (37a) Iand neglecting the small product H2*(a)Hi(a)leads to Hence it can be shown from (37a) that

H2(O) + H-(a)- si*a+b2a2 Sn a Is al CIa. F2(Q + w)A-(- sin)a1b2  I20 w)J1()J al . (37b)

By decomposing the function (Mlsin a) as Substituting into (37b) the approximation for h2(a + I
- ?2) given in (35c) and (35f) as 1a21-- , one obtains

-+- , (35e)sin a v sin a w.m s '(a + w)Ii2(-a - w) - [ Iand noting that the approximation of h2(a + w72)

must be regular in the strip IRe (a + w/2), s wr, one [12J]4 Sinre€ognizes •*1 ý21 14 02'

(w + a)(sin 2 a + b2) a sin a (+a)(in +b2 i
H 2+ , (35f) (w + si. , I,, 2l-,, . (37c) IW412 Si a v'a2 wa2 si a (7

SCmos al. Thus, a two-term approximation for A2 (-a - 9r) in
the region 1 ' cos ai -C a2l can be found following

Substituting (3Sf) into (35c) leads to a similar procedure as discussed in the previous

h2(a + A *'rriJ2 4a~l2 section, namely,

2 Cos!!° I- i l0 d
Similarly, 4 Y-a

I
I
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I. INTIOOUCflON

The estimation of sina parameters via roaticnal
Angle and Polarization ,varire techniqueESPRIalgorimof Roy.Pa utraj and Kailth (1, 21 ws sinal subspact methods

Estimation in a Coherent Signal o e na array.Th ESPRIT algorithm hUs the ditic advanage•

Environment over the multiple signal dassification (MUSIC)
algorithm [3] that it does not require a search oam
parameter space. When the MUSIC algorithm is
used to estimate arrival ang~s one must search over
the set of a possble arrival angles to obtain the

JUN " Mmbff, IEEE estimates Although such a search is not difficult in
3L T COMPTON, Jr, FoW, IEEE one dimension, it quickly becomes prohibitive as the
ibe Ohio Stae umvemty number of dimensions increas Angle estimation

problems involving electromagnetic signal often
require a search over two spatial angles. Moreover,
because elecromagnetic signals usually arrive with

It k down low a umeffs Imr wrsy d a rend ofk. unknown polarizations, two more search dimensions
my be uad With tb ESPRIT adibm • smd spaial moNmld8 may be needed for each sig to estimate the signal
tech1kasto emman erivai dindum wd pnddhinen ofd polarizations. The ESPRIT algorithm avoids the
&wewwa wh Ph way.,, sý m wi dwf qpk problem of a search entirely and is thus preferable to

I an P the MUSIC algorithm.
In an earlier paper [4], the authors showed how the

ESPRIT algorithm can be used with a linear array of
cross-polarized dipoles to estimate signal polarizations
and arrival angles in one angular dimension. Also,
for problems where the signal polarization is not of

interest, a related paper [5] shows how to incorporate
unknown signal polarization in the ESPRIT algorithm
so that signal arrival angles can be estimated in a way
that works regardless of the signal polarizaion.

In K4, 5], it was assumed that the incoming signals
whose angles and polarizations are to be estimated are
uncorrelated, or at most partially correlated. However,
the performance of these methods degrades rapidly as
the incident signals become highly correlated. They fail
to work properly when the signals are coherent (Le.,
perfectly correlated).

The purpose of this work is to show how the
ESPRIT algorithm can be combined with spatial
smoothing techniques [6-10] and used with a uniform
linear array of crossed dipoles to estimate signal
directions and polarizations for coherent signals. We
present one method of spatial smoothing that can
be used when it is necessary to estimate both the

Uarnumosedpt J~~yDIarrival anales and the polarizations of signals. We also•uget • Janury 0, ••; Jun •o •.present two additional methods that can be used when

IEEE Log No. T-AEsIZw3 only the signal arrival angles are of interest, not the

""8. Wu ,F F mI in prt by th Jt S E polarizations, but it is still necessary that the estimator
SnWjm i Cott N00014--1007 witb w O• o Ste work properly with arbitrarily polarized signals.
Uaumiuy Rmanh Foandelon. In Section II, we define the array that is used

Aun' anut ad ens 3 LI, IDept. df Elemctra En~oe. and the signal parameters. In Section III, we
UNenhy of rmy, I.Ait KcY 4Mo; R. T coioo, show how forward-only spatial smoothig 1[7, 8]
Jr., Campim PRea , I., 477 Poe Ave., wxhiagica OH can be combined with ESPRIT and used with a

30s8-,30X I polarization-sensitive array to estimate both signal
directions and polarizations for coherent signals. In

5M9s.V O0, 1@M IEEE Section IV, we describe an alternative procedure
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a Id

Z~.2 Fdabaia *si..

H&Ig~. UaihuNo amrarof at ui dipota. (q, 0) or (y, ) uniuely define the polarizaton state of
a wave. %e can compute 7 and q from a and P and a

based on 151 that may be used with both forward-only and P from 7y and q~ [12, 4J.I
(FO) and for ward/backward [9, 101 spatial smoothing An arbitrary plane wave comning into the arry
to estimate signal directions only. In Section V, we ia characterized by three angular parameter and
present some typical examples and compare the an amplitude. The kth signal, k =-1.Z..., .K, is ,
performance of the different techniques. Fnially, characterized by its arrival Angle Ok, its polaization
Section VI contains our conclusions. ellipticity angle; (k and orientation an*l A&, and its

ampitude E& (Le,,F is the value of Ein (2)and (3)

11. PROBLEM FORMULATION for the kth signal). Se say the kth signal is defined by
(Ok. OltPh, Ek).

Consider a 2L-element array consisting of L pains N* assume each dipole in the array is a short
of crossed dipoles, au shown in Fig. 1. Mth Lth dipole dipole, so the output voltages of the x and y ai
pair, I - 1,2,... .L, has its center on the y axids at dipoles are proportional to the x and y components,
y - (1- 1)6. The distance 6 between two adjacenit respectively, of the electric field. An incoming signa
dipole pairs is a half wavelength. The signa from each with components E, and E4 has z,y,z components:.
dipole is processed separately. For the Ith dipole pair, E =- 3  + Ee
let zi(t) be the signal received on the x axids dipole and
y1(t) the signal received on fthey axids dipole. = (-E,)e + (E* cosG). - (F#sins)e. (4)

Suppose K (with K < L) narrowband signals I [-cste Snfcaeqc
impinge on the array from angular directions (6,t, 0s <E(cs) 3 (sncse~
k < K) in the yz plane, where 9 denotes the standard - (sin-ysin~ei'F)ezl (5)
polar angle in the yz plane, as shown in Fig. 1. It is3
assumed that each signal has an arbitrary elliptical where q., e., and e, are unit vectors in the x, y and
electromagnetic polarization [1111 z directions, respectively. We define the space phase

To specify signal polarization, we use the following factor
definitions. An incoming transverse electromagei q = ej(2r'A)Bk* (6)
(rEM) wvem propagating into the array has an electric where A is the wavelength of the signal. Including the
field given by E - -E~e, + Efee(1 time and space phase factors in (5). we find that an3

incoming signal characterized by (9,a,PE) produces
where e,, ev, and %. are unit vectors in the x, 9, and a sigal vector in the ciossed dipole pair centered at
r directions, respectively, in Fig. 1. We consider the y (1V- 10 as follows:
polarization. ellipse produced by E. and Es. Given this rq10)
ellipse, we define aand Pto be the ellipticity and the Xijmq- 7
orientation angles, respectively (see [41). At define P LY: (0]-us q'()
to be inthe range 0 <P<r, and ais aw ys in the whlere
range -r/4 < a < w/4. See Fig. 2. [ c0s17

For agiven aand fi , and E# ame given by (aside [sin-7cs9,"](8
from a common phase factor) [4] and

E, =Ecos-f (2) S(1) WEeJ(W$+) (9)
E.-=Esin-fej1 (3 with wthe frequency of the signal and #the carrier3

where -f describes the relative values of lE, I and Eel1 phase of the signal at the coordinate origin at t =
and q is the phase by which the 9 component leads the We assume that K such signals specified by Ok,
z component. 7is always in the range 0 < 7:5 /2 k -1,Z ....,K, are incident on the array. In addition

and qis in the range -, <q <w. Either pair of angles we assume athermnal noise voltage vectoru01(t) is
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prenet on echt signa vcsor uiQ). The wint) are with 2L x 1 coluums
assumed to bem escmplex Gaussin processes

621, where I denote the identity matrm. (1
Under these amumptions, the total signal vector

received by the croned dipole pair centered at y = "
(I - 10 is si•n by 9A q- J

x The column ft am assumed linearly independent
E~) >uksk )qj- + ni (t), 1~l2..L They define a K-dimensional zipalm=bapce in akal 2Zl4=cmion space.
hal (10) By assuming the columns in A are linearly

Swhere u, land qt are given by (8) and (6), m ely, independent, we are excluding from consideration

with subscript k added to each angular quantity, and degenerate case, such as when a signal cause ero

sa(t) is given by (9) with subscript k added to the output on both the x and y axis dipoles at the same
amplitude and carrier phase. time.

The carrier phase angle f'l is assumed to be a V assume that the element signals are smpled at

random variable uniformly distributed on [0,2"). The N distinct times ta, n - 1,2,...,N. The random noise

other vk, for k = 2,3,...,K, are also random variables vectors n(t,.) at different sample times are assumed

but it i assumed that each of thes differs from i independent of each other. The problem of interestbuIti sue htecho hs ifr rm• is to estimate the Gk (and possibly the ak•t for k =
by a fixed amount. Thus, the Ok are all rigidly tied to
one another, and the incident signals are coherent (i.e., 1,2,...,K from the measurements z(t.), n = 1,2,...,N.

perfectly correlated). In this case, each signal sk(t) can In Section IlL we consider how to estimate all
be written as a scaled replica of some signal so(t) for three parameters Ok, 0 k, and Ak from the z(t,). Inwhich EfIso(t)12} = 1, le.e, Section IV we consider what can be done if we need

to estimate only the Ok-

S k(t) = gkso(t), k = 1,2,...,K (11)

where g, is a real constant, and g2,gs,...,gK are III. ESTIMATING BOTH DIRECTION AND
complex constants. POLARIZATION FOR COHERENT SIGNALS

Let z(t), s(t), and n(t) be column vectors Consider the array covariance matrix of z(t) which
containing the received signals, incident signals, and has the form
noise, respectively, i.e.,

'iI) = E{z(t)x"(r)} = PKo + o'aI (16)

Z2(t) Ro = AReAH (17)

) I with (.)H denoting the complex conjugate transpose

LzL(J and R. = E(s(t)sii(t)) representing the source
covariance matrix.

"In general, if the signals s1(t),.., ) are

s2(t) uncorrelated, R, is diagonal. If the signals are partially
8(t) = ) correlated, R, is nondiagona but nonsingular. For

I the case considered here, the signals are completely
correlated, so R, is nondiagonal and singular.

As long as the s,(t) are not completely correlated,
the eigenvectors of Ro (or R) that correspond to the
K largest eigenvalues of Ro (or R) an the same

n(t) [32(t) signal subspace. as teclmvcorinA P]. Thisu~t) = .hat is used in the original ESPRIT algorithm [1, 21

for estimating signal direCion and in [4] for estimating
nL(f)J both direction and polarization.

When the incident signals are coherent, however,Snz vector has the form using E{ISo(t)12} _ I and (11) yields

z() -As(t) + n(,) (13) R, = e (18)

where A isa 2LxK matrix where g isa Kx x column vector

A=,[at 2 ... a,] (14) gg= g1 2 ... girlT (19)
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I
We. ywdg: ithH(2)1ab iue

_ _ _ _ R•u • ccM (27)I

...... where

l4I S" iuii Kbic h ma ... *, --19!= GAJ (z.) (

r (.)T denotes the transpose. For ft case,
the m P, is of rank 1 and the .ga sums G s dsugbgsp. (e9)
based approach will not wok 1b use signal su...sc and

One method of ovromn the sigulariy of (30)
. fr ohernt signas t FO spatial smoothing I.

technique of Shua, Wax, and Kailath [7,81, The idea of -• q< - q -1
this technique is to divide a total array of L elements ot th

into U overlapping subarrays, as shown in Fig 3. Each Note that as king as the signal arrive from d= inct

subarray then has L, - L-L4 + 1 elements and we direction , the Vaderm de mari x L. is n asiularn
assume that L, > K. As shown in 17, 8), averaging If in addition 1o > K, then C is noasingul so the
the covariance matrices associated with the subarrays rsak of I1 is K.
restores the rank of R, and makes it possible to use A second potential method for overcoming
signal subspace methods. the singularity of R, for coherent signals is the

The FO method can be applied here. Let f (I) forward/backward spatial smoothing technique of i
denote the column vector received from the lth 19, 101. The idea of this technique is to average
subarray, Le., the covariances matrices associated with both

the subarrays shown in Fig. 3 and their complex
If[(t) = Z It (t) ... ÷L4 ,_(t)]T, conjugated backward subarrays. However, this method

cannot be used in the present problem when we want
to estimuate akP as well as Ok. Th• reason is that the

The covariance matrix of the Ith subarray is [8] amplitudes of the elements of A given in (14) are not n
all unity, as can be seen from (8). However, if we want

S= E{ i(t)[-(t)]H) to estimate only the 0t, but not the polarization, this
technique can be used. We consider this case in the U

= A*'-1R,(*'-)HAH +"o21 (21) =& section.

where IV. ESTIMATING DIRECTION ONLY FOR
0, - diag{qiq2,...,qx} (22) COHERENT SIGNALS

and where A is now the matrix in (14) and (15) with L In [51, the authors described a method for using the
replaced by Ls. array of Fg. 1 to estimate signal directions only, but to .1

We define the FO spatially smoothed array do so in such a way that the estimator works properly
covariance matrix R! to be the average of the matrices regardless of signal polarization. This approach treated

M(, i.e., the x aids dipoles and the y aids dipoles as separate I
14 subarrays. The arithmetic average of the covariance

Rf= A E . (23) matrices for the x and y axis dipoles was used as the
I-i total covariance matrix in the ESPRWT algorithm.

The matrix R can be written as We ow show that, with coherent signals, this same a
approach can be used in combination with both the FO

Ra - It• + o21 (24) 17, 8] WW fm [9, 101 spatial smoothingtechniques.m
where HLet x(t) denote the column vector received from

P ,AI A" (725) the z axis dipoles, Le.,
with R! denoting the FO spatially smoothed murce x(t) - [xI(t) X2(0) ... x.(t)t (31)i
covariance matrix x(t) is the subvector of z(t) consisting of the

4O odd-numbered elements of z(). The variables x(t) can
R .- , - • • (26) be written0 +

L Ai. xQt) = A L. N Rs(t) + ETAI) (32)
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where . is defined as in (30) with Lo replaced by L., the column vectors in Ii.. For this case, the ESPRIT
0, is defined as algorithm can be applied to If for direction estimation.

For coherent signals, however, (43) becomes
f. - diag{-cosyl,-cos72 ,...,-cosyK) (33) ,- 1[#.g I #,sl*[j I Igj'" (44)

and nu(t) is a zero-mean complex Gaussian process in which case the rank of I, is at most 2. Thus the
with covariance a21. The matrix AL. is the direction coherent signals must first be "decorrelated" before
matrix for this approach. The angles of arrival are the ESPRIT algorithm can be applied.
assumed to be distinct, so that the columns of The first method of decorrelating the signals is the
AL, define a K-dimensional signal subspace in an FO spatial smoothing technique of [7, 8J. We apply this
L,-dimensional space. The covariance matrix of x(t) method to the averaged covariance matrix I in (39).
is In the curves below, we call this composite method the

alternative forward-cmly (AFO) method.
R. =Efx(t)xR(t)} In this method, the total array of L elements

L,-*R,*AH +o21. (34)is divided into Lo overlapping subarrays with L, =x L, (34)L - 14 + 1 elements in each subarray, Let 4 (t) denote

Similarly, let y(t) denote the column vector the column vector of the x axis dipole signals in the th
received from the y axids dipoles, Lc., subarray,

I Y(1) = [yl 0) Y2(t) ... yL.(t)]T (35) Xif(t) = [x(t) x,+1 (t) ... X,+L._I(t)]T,

where y(t) is the subvector of z(t) consisting of the 1 < I < Lo (45)

even-numbered elements of z(t). The variables y(t) can and let yf(t) denote the column vector of the y axis
be written y(t) = XL.ISQ) + nQ) (36) dipole signals in the lth subarray,

where 1 (t) = [yL(t) y,+1(t) ... yl+L.-l(t)]T,

0y = diag{ - sin -1 cos Ole'h, -sin 7 2cos02el,.... le I_< .< Lo. (46)

Then let R, be the average of the covariance matrices~ 3)of if()and '('
and ny(t) is a zero-mean complex Gaussian process

with covariance o21. The covariance matrix of y(t) is Rif = E{xf(t)[xf(t)]H +y(t)jyf(t)]HI. (47)

!y = E{y(t)yH(t)) The AFO spatially smoothed covariance matrix is

= LR Y oAL, 2 1. (38) the average of Nil:

Consider R, the average of R. and RI, xf, f (48,1 ,]l (48)

can be written 

RI can be written

+ t2I (40) X1 = J + a•I (49)

where where 1 [ -)
ox= ALISAL, (41) = AL, . (50)

with 1, defined as with V, denoting the AFO spatially smoothed source
covariance matrix

=• r 4_ . ,da O]**ILO +*j + yeRZ)) ((42) (51I D *# 1,(,+ l),*
R, j* 011. 43)2.1-1 1 q-q

As long as the incident signals are at most partially q q ) *•]. (51)

correlated, R, is nonsingular. Since by assumption By using (26)-(27), rf can be written
none of the incident signals produces zero output

on both the x and y axis dipoles at the same time, R 14CC It.IJccH+
[0. I 0,] is of rank K. Thus R, is nonsingular and the 2Lo Y

eigenvectors of No that correspond to the K largest C (52)eigenvalues of No span the same signal subspace as 2L(
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wh or.C I (see& W I ,'' denotes the AFB spatially smoothed s ourc

(5)covarianec matrix
-G[O,,Z.I t,X•l (5-T -I, ,(-'d•)l;"-)s.(1

The last equality holds because G, 0, and #0, are (
diagonal matrices. Furthermore, frm (52) we have

The minimum number of subarrays Lo required f//b I +q

to make ti nonsingular is between K/2 and K -4+1-1

depending on the signal scenario. On the one hand,
suppose all incident signals are linearly polarized so = .- [CiC1 + ;q CJJHCT[ 4q ]4]H]
there is no output on the y axis dipoles. Since by
assumption none of the signals produces zero output C2C (62)I
on both the x and y axis dipoles at the same time, the 44

diagonal elements of 0, are then nonzero. For lt to where we have used JJH = I and defined
be nonsingular in this case, we must have Lo > K. On
the other hand, assume K is even and suppose K/2 C2 = [C I *(L'- 1 )CIJ]• (63)
signals produce zero outputs on the x axis dipoles and
the other K/2 signals produce zero outputs on the y Next, using (53), we have

axis dipoles. In this case we must have Lo 2! K12 for T = [GIA• .-- (L-')
W,1to be nonsingular. C2  I G0,Az l

The second method for decorrelating the signals x G1AJ wHwe
is the forward/backward spatial smoothing technique
of [9, 10]. In the curves below, we label this method, = [G T, I G -,TC. G'*-,*(L-1)
when used with the averaged covariance matrix R in
(39), the alternative forward/backward (AFB) method. x AL4  (64)

The AFO spatially smoothed array covariance where we have used (57) with L, replaced by Lo and
matrix /b is defined as [9, 10] L = L, + Lo - 1. C 2 may then be written as

" +J()'J] (54) C2 = G[0,Lr I4 ,A I 4 *;G.G-1

where If is defined in (48), superscript* denotes x ';G', L- )
complex conjugate, and j is the exchange matrix q G'G Iq A1--

0.= G[.XTQ. I II #; a,%.oj (65)

0 ... 1 0 where H is the diagonal matrix
J (55) H = G*G- 0q (66)I

• .0= ighth...,) (66)I

From (49), we have 
with

t-q(L-1)jW•),j =j(g + 021)jyj(l)j 21 () ,= j rRLI) k = 1,2,...,K. (68)

Then using the relation For 1,"' to be nonsingular, the minimum number

of subarrays Lo required is between K/4 and K,(57) depending on the signal scenario. Each of the-T -T -T -Twe have from (50) submatuices #,A1 4 , *,A. 4 , #*HAI,, and *,HA1 4 , i
JWl•/)'J = J(A-L. W H)-J a K x Lo matrix. 7b make C2 have rank K, there must

be K independent column vectors somewhere in the
L58) , set of these four submatrices. For most combinations

q.I(--,)[; -l . (s' of signals, C2 will be full rank if L = K14, i.e., so

there are K/4 columns in each of the submatrices in
Therefore • can be written as (65). Usually these K/4 columns in each submatrix

if/b = /+ I (59) will be linearly independent of each other, so C2 will
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have rank K. However, for certain specific choi o
of signal parameters, some of these columns will be
linearly dependent, in which case Lo will need to be I

larger than K/4. Choosing Le - K, however, is always
sufficient to make C2 full rank, because then each of 03

the four submatrices in (65) has rank K, regardless of
the signal parameters.

V. SIMULATION RESULTS

We now show several examples illustrating the use
of these techniques with coherent signals. The results
below were obtained by using fifty Monte Carlo trials.
The array consisted of L = 10 pairs of crossed dipoles.
All incident signals were assumed to have the same
unit amplitude Ek. The signal-to-noise ratio (.SNR) Ls
shown in the figures is defined as -l0logloa7 dB. A

finite number of data samples N was taken at each
dipole output The subarray covariance matrices were
estimated from the available data samples, as described 0.

in [4] and [5]. The spatially smoothed covariance
matrices were obtained from the subarray covariance 0

matrix estimates. .O.5

We first show an example that illustrates how the
results for spatial smoothing with coherent signals
wmpare with those using the method in [5] with
partially correlated signals and no spatial smoothing.
We consider an example with 7 coherent signals. The
SNR for each signal is 20 dB and the number of data (b)
samples is N = 200. The number of incident signals Fi. 4. Direction ea*ates of 7 coberent sinals obtained with
is assumed known in the estimator. The direction AFB method with L - 10, SNR - 2D dB, N - 200,14 - 2,
of arrival estimates are computed by using the AFB oienation angles zero, elptiaity angles equally spaced between

technique. Two subarrays (Lo = 2) of 9 elements -450 and 45". (a) Sigpals arrive from equally spaced angles every
20" between -550 and 6'. (b) Signa arve from equaly qaed(L, = 9) are used. Fig. 4 shows the direction estimates angles every 11.5" between -29.s" and 39.s'.

obtained with each of the 50 independent trials plotted
on a unit circle at those angles from the center of the
circle. The 50 estimates of the angles are superimposed shows the results when the signals are evenly spaced
on the same plot, so the spread in angles can be from -55- to 65-, and Fig. 5(b) shows them when they
seen. Fig. 4(a) shows the results when the signals are spaced from -29.5° to 39.5'. Note that the results
arrive from equally spaced angles every 20' between in Figs. 4(a) and 5(a) are similar, but with the signals
-550 and 650. The corresponding ellipticity angles more closely spaced, the results in Fig. 5(b) are much

are also equally spaced between -45' and 45' and better than those in Fig. 4(b).
the orientation angles are zero. Fig. 4(b) shows the This example illustrates that the resolution of the
results for a smaller separation between signals, every AFB technique for coherent arrivals is poorer than
11.5' between -29.5' and 39.50 and for the same what can be achieved with partially correlated signals.
polarizations. As may be seen, the estimation accuracy This drop in performance occurs because the full rank
is poor when the signals are spaced every 11.5?. The spatially smoothed matr "" for coherent sources is
eason is that when the angles ar closer the direction different from the full rank source covariance matrix

matrix AX, is becoming ill-conditioned. This example R, for noncoherent sources. The numerical condition
illustrates the resolution limits for this technique as the of R, for noncoherent sources is determined by how
7 arrival angles approach one another.

Next, for comparison, Fig. 5 shows the aronrly the sources are correlated, but not by the
corresponding results when 7 partially correlated arrival directions. The numerical condition of slftb,
signals are incident and the technique of [51 is on the other hand, is determined by how closely the
used, Le., there is no spatial smoothing. The other arrival angles are spaced, as can be seen from (62)
parameters of the signals are the same as fo; Fig. 4. and (65). Note that ][l/ depends on I,, which is
In this case, an array of 9 elements is used, to make a function of the arrival angles. As the arrival angles
the results comparable to those in Fig. 4. Fig. 5(a) become more dosely-spaced, the columns of Az,
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13 to degrees squared) for the first signal and for the

FO, AFO, and AFB approaches as functions of the
SNR when Lo= 3. Fig. 6(b) shows the variance of the

polarization estimates for the FO approach for the first
osignal "rhese curvs were obtained by assuming that
the number of incident signals is knowi. The variance0of the polarization estimates in Fig. 6(b) is defined as

.01 _•the mean-squared value of the angular distance ( on
the Poincar6 sphere between M and •f, the points.1 representing the actual and estimated polarizations

q(, q) and ( ), •), respectively, as described in [41, where

cos= cos27cos2J + sin2-1sin2 cos(q- 7)

,- with ( in the range 0 < ( _ r. (

When the number of incident signals is unknown,
I •we also used the minimum description length

(MDL) criterion [14, 15] with the spatially smoothed
03- covariance matrix to estimate the number of incident

signals. Fig. 6(c) shows the probability that the correct
0 number was obtained as a function of the SNR for

each of the three methods.
•-0. Next, we consider an example where three identical

signals arrive from (25- AG)°, 250, and (25 + AG)°,
so A9 is the angle separation between two adjacent
angles. The corresponding ellipticity angles are 45o,
40(, and 35, respectively, and the orientation angles

(b) are zero. The SNR per signal is 20 dB. Fig. 7 shows I
Fig, 5. Direction estimates o 7 noncoherent signals obtained with the error variances and the probability of estimating
the method in 15) with L - 10, SNR - 20 dB, N = 200, orientation the number of signals correctly for the FO, AFO, and

angles zero, ellipticity angles equally spaced between -45" and AFB approaches as a function of A8 when Lo = 3.
450. (a) Signals arrive from equally spaced angles every 20I

between -550 and 65°. (b) Signals arrive from equally spaced Finally, we consider an example where three
angles every 11.5* between -29.5" and 39.5". identical signals arrive from 13, 250, and 37*. The

corresponding ellipticity angles are 450, (45 - AG)0 ,

and (45 - 2Aa)° and the orientation angles are zero,
become more nearly linearly dependent, and 1,/b so AG is the polarization separation between adjacent
becomes more ill conditioned. Moreover, as the signals. The SNR per signal is again 20 dB. Fig. 8

coherent arrivals become more closely spaced, -f/b shows the performance of the FO, AFO, and AFB
in (60) becomes more ill-conditioned because both approaches as a function of Aa when Lo = 3.
A., n�f// become l-conditioned. For partially Figs. 6, 7, and 8 show that the AFO approach
XorreLated signls, bec e l-condition e ss Foreartiay yields better performance in estimating both the signalcorrelated signals, the r--conditioning is less serious directions and the number of incident signals than thebecause only AL in Ro of (17) becomes ill-conditioned. FO approach. Note that the signal subspace dimension

The more ill-conditioned P/b or Ro, the more in the FO approach is twice as much as the dimension
sensitive the matrix is to noise perturbation [13]. in the AFO approach, but the number of averaging
(These comments apply to the FO and AFO spatial subarrays is half as much. Thus these figures show that
smoothing techniques as well.) better results may be obtained by trading the signal

We next show the error performance of these subspace dimension for a larger number of averaging I
spatial smoothing techniques with coherent signals. For subarrays.
the next three examples, we use N = 31 data samples. From Figs. 6, 7 and 8, we note also that using the

First, we consider a case where three identical AFB approach yields much better performance in
signals arrive from 200, 25%, and 30. The estimating both the signal directions and the number
corresponding ellipticity angles are 45%, 40, and 350, of incident signals than the FO approaches do. The
respectively, and the orientation angles are zero. For reason for this may be seen by comparing the AFO
this case, the signal directions are closely spaced and and AFB approaches. Using the forward/backward I
the signal polarizations are similar. Fig. 6(a) shows the approach results in two extra submatrices in C2, as
direction estimate error variances (in dB with respect may be seen by comparing (65) with (53). The extra
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Fig. 6a Performance of FO, AFO, AFB metbodg vers SNR for 3 Fig. 7. Performance of FO, AFO, AFB methods varss AO for 3

identical signals arrving from 200, 25, and 30, witb L - 10, identical signals arriving kom (M5- &#)-, 25, and (25 + &0)0
N -31, Lo -3, orientation angls zero e~llpticiy angles 40, 40, wihL- 10, N -31, SNR -2D dB, L4 -3, oderntionangles

and 35*, respectively. (a) Variance of direction estimates. ewr, eulipticity angles 450, 400, and 3S0, respectivel. (a) Wriance
(b) %triance of polariation estimates, (c) Probability of corat. of dkectio estimates. (b) '.irtnce of poiaulation estimates.

detection. (c) Probability of F a P r detection.

Isubmatrices reduce the. ill-conditioning of W- bwhen coherent signals. We have shown that the FO
tesignal dzrections are closely spaced. spatial smoothing approach may be used to estimate

both signal directions and polarizations. The
VI. CONCLUSIONS forwardibdacwrd spatial smoothing approac mayU ~ ~~be used to estimate sigal dircinsW only. Both

We have described how a uniform linear array smoothing approaches may be used to estimate the
of crossed dipoles may be used winth the ESPRIT number of incident signals. Some examples showing
algorithmn and spatial smoothing to estimate the typical results were presented. It is found that spatial
directions and polarizations of arbitrarily polarized smoothing yields poorer reuoluticm for coheret
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I A proof of the Woodward-Lawson sampling method for a finite linear array
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An extension of the continuous aperture Woodward-Lawson sampling theorem has been devel-
oped for a finite linear array of equidistant identical elements with arbitrary excitations. It is shown
that by sampling the array factor at a finite number of specified points in the far field. the exact array
factor over all space can be efficiently reconstructed in closed form. The specified sample points lie
in real space and hence are measurable provided that the interelement spacing is greater than
approximately one half of a wavelength. This paper provides insight as to why the length parameter
used in the sampling formulas for discrete arrays is larger than the physical span of the lattice points
in contrast with the continuous aperture case where the length parameter is precisely the physical
aperture length.

I I. INTRODUCTION without the need to solve simultaneous equations.

In a pair of classic papers, Woodward and Law- A practical constraint of this technique is that the

Ison [1948] and Woodward 11946], a very popular interelement spacing must be greater than or equal

technique was developed for synthesizing finite to one half of a wavelength for the sampled field

continuous aperture excitations given a finite num- points to lie in real space (at a real angle 0) if there
Sber of (far field) samples. The Woodward-Lawson are an even number of elements or the interelement

technique implements an aperture excitation that is spacing must be greater than a distance slightly
formed by summing a finite number of uniform smaller than a half of a wavelength if there are an
amplitude linear phase distributions. Woodward odd number of elements. This restriction is signifi-
and Lawson 11948] hinted at extending this tech- cant and excludes an empirical application of this
nique to linear arrays of discrete elements. Their theory to some practical arrays. This practical con-
expressions for the continuous aperture case con- straint does not imply that any approximations have
tain a parameter which corresponds to the length of been made with regard to the sampling analysis; it is
the continuous aperture. This length parameter was exact. An expjo ut time dependence is assumed and
incorrectly assumed to be the physical length of the suppressed throughout this paper.
discrete array in Balanis [19821, while Stutzman
and Thiele [1981] used the correct length which
extends past the physical array lattice points by one 2. ANALYTICAL FORMULATION
half of the interelement spacing on both ends of the
array. We are considering a linear array of M + I

In this paper the extension of the Woodward- equally spaced elements that reside on the array
Lawson sampling method for finite linear arrays is lattice shown in Figure 1. It is assumed that the
formally proven using a technique that highlights element pattern of each element is known and that

the reasons for the length disparity between the it is the same for all elements which is equivalent to
continuous aperture and the discrete aperture the typical assumption that the far fields of the
cases. The far fields of a linear array are determined linear array can be expressed as follows:
exactly by sampling the far field at a minimal
number of predetermined locations. This method exp -jkr
efficiently reconstructs the far field in closed form E(r) = EP(0, 4) AF(9) . (I)

U Copyright 1993 by the American Geophysical Union. where E(r) is the electric far field, EP(9, #) is the

Paper number 93RS00591. element pattern, and AF(O) is the array factor which
0048-~3193RS-00591S08.00 can be expressed by the well-known relationship
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482 SOMERS: WOODWARD-LAWSON SAMPLING METHOD FOR A FINITE LINEAR ARRAY

Z schetti, 1987]. It is noted that Cm is defined in
Unit configuration space, whereas AF(O) is defined in
Cell cos (0) space. This allows Shannon's sampling 1

theorem [Peebles, 19761 to be applied in cos (9)
m-M space resulting in the following representation for

-~ AF(6,) kL cos (0) A(

2

rniX where

m=O 9.. 0. = Cos- I , (4)

Fig. 1. Array lattice configuration. and L is the length parameter of the array which
must be determined. Shannon's sampling theorem
dictates that the field must be sampled in cos (0)

M / M),J space at intervals equal to or less than A.(length of
IAF() = • Cm exp - - array), which is the Nyquist rate. An exception to
m-0 this rule occurs if there are delta function excita-

tions at the endpoints of the interval in the band-
limited domain (configuration space) [Peebles,

C., exp -jk cos (0) m- _ z] (2) 1976], which is the case here since the array is
,n-0 2 composed of a collection of point sources. The

C,, is the complex amplitude of the mth element, M sampling theorem is obtained by repeating the finite
is the index corresponding to the M + Ith element, (physical) band of elements in configuration spaceSis the unit vector along the array axis, and xz is so that the array is periodic (and infinite) (see Figure
the interelement spacing. The objective of this work 2). The far-field pattern in cos 6 space is low-pass
sthefienteremementspacing.Te AM)frobjecfiitie ofhis wfiltered to allow only the original spatial bandwidth
is to efficiently determine AF(9) from a finite mini- (i e., the physical length Lo) to contribute to the

mal number of sampled far-field values, AF(RO), in array the physical length paribute t the

which 0, is specified. array factor AF(8). The length parameter L dictatesI
the distance between the repeating finite bands of
elements. If the length parameter equals the physi-

2.1. Sampling theory development cal length of the array, then the first and last

Equation (2) shows that the array factor is space elements of the adjacent arrays are coincident, and I
limited by z = -(M &z/2) and that C, are Fourier information is lost. This is the onset of aliasing. The
series coefficients of AF(O) [Bucci and France- concept of the unit cell was introduced to define the

*.. ego0 e eeeee oeeee e o0 000 ee0 *0.0

K-L--- 
z

Fig. 2. Example of a five-element array in configuration space after the original array has been repeated. The I
physical length is given by LP, and the length parameter is given by L.

I
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length parameter L so that the delta function exci- (AL Co 40) Mtations are no longer at the edges of the band; thus AF(O) sin 2 YAF(.)

the Nyquist rate can be used without introducing --/

alaising problems. Each unit cell is defined to con-
sist of a line segment of length Az which has the - am÷, a,• + 1)
radiating element at its center. The unit cell ensures L (9)
that a source-free region surrounds each array ele- k---L cos (9)
ment which serves to artificially extend the array 2
endpoints by half a unit cell (or Az/2) beyond the
physical dimensions of the array. In other words, if Equation (9) shows that AF(U) is determined by M
the array is considered to be longer on both the top + I complex samples and since the array has M +
and the bottom (in this case by Az/2, half the unit I complex excitations, we can conclude that this
cell), then the radiating elements do not lie on either representation of AF(U) uses a minimal number of
of the endpoints of the array, and, consequently, samples. This is true because the number of degrees
the Nyquist rate can be applied. L is defined to be of freedom in the array, 2(M + 1), equals the
the total distance spanned by all of the unit cells as number of independent field quantities sampled.
shown in Figure I. The integer quantity q in the indices of the first

Equation (4) shows that the field is sampled at AlL summation determines the interval of m in which 6,
intervals in cos (6) space. Geometrically, it is seen is sampled. The minimum practical interelement
that spacing is dictated by the condition that all the

sampling angles must be real:
L =(M + I)Az (5)

or L (M + I)Az'&

A A which is seen by examining (4). Since the value of q
S(M + !)-. (6) is arbitrary, we will choose q such that jmlma1

remains as small as possible, thereby allowing the

By examining (2), it is clear that AF(O) is periodic in smallest possible interelement spacing Az to be
cos (6) space with perodicity A/Az which along with used. The sampling theorem remains valid for all
(6), implies the following recursion relationship: interelement spacing and consequently for real and

complex sampled angles. However, from a practical

AF(O, + M + 1) = AF(09) (- 1)M. (7) standpoint, it is not possible to physically measure
a field value at a complex angle. For ImlIx to be

This equation is a consequence of sampling at the minimal a good choice of q is
Nyquist rate and defining the array boundaries to be
extended past its physical boundary by Az/2 on q -M

both ends of the array. Recognizing the identity in 2
(7), (3) can be expressed as q - M (11)

; Maodd.2

AF(O) = T AF(O.) I (-1) m with this choice of q, mirax is given byI _m a -M~ q 
W

kL cos (9) Imli.. M even,
sin - (m + n(M + 1))wr (12)

kL cos (0) ( Im+. -) 2 Modd.

2

By substituting the above expression for ImlIx into
or (10), the lower bound of the interelement spacing

I



I
414 SOMERS: WOODWARD-LAWSON SAMPLING METHOD FOR A FINITE LINEAR ARRAY

can be determined under the constraint that the 30 1
sampled field points lie in real space: tn-O

0 25 (C,-74j +"-" Rcamtructed

Az z (C.wS÷j2) U X St rd

-" Meven, E' (c,-÷jO) Y-A 2(M + ()1 0
Az 1 1)(I3j

m-q 0

AF(9) = sin 1 \ 2 AM(9,) F(8; M, M; UL), 0 n=-

(14) 0 30 60 9 o 120 5 o

where F(8; m, M; UL) is given by

Fig. 3. Comparison of generated and reconstructed array factor-(-1)M'* data.

F(; m, M; kL) = C kL cos ()

""-" (m + n(M + !)),j
( 15) F(O; m, M; U) = CSC c (w) (21)

M + 1
Letting Lettin Where the following identity was used [Abramowitz

r =1Mand S+egun, 1964],
I O m (16)MW +1 [ 2 .

F(O; m, M; AL) can be expressed as csc (z)- + 2z Z2 n2_2 (22)

F(;mM A)~~1 ( -1). (17) Th ra factor can be expressed in terms of the
M)_ sampled values by substituting (21) into (14):

Performing the following algebraic manipulation sin cos ()) 9+M
yields AF(O) = + AF(O.)(-l)'csc(w).

(-!)tm  uq I

F(O; m, M; kL) = M + ) (23)or 3
MIT wnw W AF(9)= • AF(O.)

N / "]-q

F(O; m, M; kL)- 7 j sin U 2S (24)

,• w+ w (,-nw) (9 (M + 1) sin + mLCOr(

which is the Woodward-Lawson sampling theorem) extended to handle the array case. Figure 3 showsa
F(9; m, M; L)..I : w+ 2w a2-) comparison between the "exact" data which is

S+ I w-generated by substituting an interelement spacing of

Ui
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Az = 0.6A, M = 6 (which indicates a seven-element the far field of a finite array that has uniformly
array) and an assumed set of complex element spaced identical elements with arbitrary excitation.
excitations, CM, into (2). The reconstructed data Since there exists a Fourier series relationship
(dashed line) which are a result of substituting the between the array element domain and cosine
sampled field points (which are indicated by space, and the array is spatially bounded, Shan-
crosses) into (24). Note that the two curves overlay non's sampling theorem was applied in cosine
and are indistinguishable, space. The length parameter of the array was de-

To deal with the synthesis problem, one can deter- fined so that the reconstructed array factor pos-
mine the complex current excitations required to sesses recursive properties and avoids aliasing
produce the array factor under the condition that the problems. The infinite number of sampling points
array factor is specified at the M + I sample angles and the array factor are periodic in cosine space
8., n = 0, ... , M [Siutzman and Thiele, 1982]: which permits a simplification by which only a finite

minimal number of sampled points are required to
I exactly reproduce the array factor. This proof pro-

M + AF(O,) •-J2 ''I'/L (25) vides insight as to why the length parameter of the
,.-0 array is larger than the physical span of the lattice

or points in contrast with the continuous aperture case
in which the length parameter corresponds to the

I A physical length of the aperture.3 l = M -- •E AF(On) e-Jk:'¢°C, (26)
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Maximum Likelihood Angle Estimation for Signals
* with Known Waveforms

Jiain Li, Member. IEEE. and R. T. Compton, Jr., Fellow. IEEK

iAhmso'e--We com~ite mazam lIkelIhood esthoattIs of tie is known (except for an unknown amplitude or phase). In
arrival amn of narrw-nband plane waves when m or all sk- either case, when only the desired signal waveform is
iin have known waveftms. We Preset compsatoMfly *11- known or when all the signal waveforms are known, these
clet and rapidly converginl algorlthms tM Iteratively mad-
m.e the hieabood fnctions. We also btain Cramer-ba waveforms may be incorporated into die process of ob-
bounds for tese estimators. Fiaily, we describe tbe condtions taining the direction estimates of the packets.
under wtich incorporaeti knowlede of oe or aD of the dgnal Few existing angle estimation techniques make any use
waveforms in the estimators improves the accurecy of the am•e of the signal waveforms. Recent techniques such as those

due to B6hme [5), Bresler and Macovski [6], Ziskind and
Wax [71, Schmidt [8] and Roy Kailath [91 are examples

1. INTRODUCTION of what are called conditional and unconditional angle es-

LGORITHMS are needed for estimating the arrival timutors by Stoica and Nehomi [10). In these estimators,

Iangles of signals incident on an array of sensors when the incident signals are assumed to be either unknown de-

one or all signals have known waveforms but unknown terministic signals or Gaussian random processes with un-

gains or phases. For example, one such application occurs known correlations. The estimate maximize (EM) algo-

in some packet radio systems currently under study (for ithm presented by Feder and Weinstein [11) is an

example, see [1]-[3]), in which each packet contains a exception. The EM algorithm is a method of splitting the

known pseudonoise (PN) code [41 acquisition preamble. search for the maximum likelihood (ML) estimate into a

I In these systems, an antenna army is used to estimate the set of parallel searches. The case of signals with known

- packet arrival angles and then to separate colliding pack- waveforms is considered in [I l] but is not explored fully.

eta arriving from different angles. In unslotted packet Miller and Fuhrmann [121 also described a generalized

radio systems, each packet arrives at the antenna array at EM algorithm that is intended primarily for the case of

I an arbitrary time. For these systems, the preamble is used unknown signal waveforms. They also briefly consider

to distinguish the newly arrived packet from other packets signals with known waveforms and unknown gains, but

that arrive earlier or later. The newly arrived packet is the they do not explore this case fully, either.

signal of interest and is the desired signal. Because of the In this paper, we consider the angle estimation problem

acquisition code, the desired packet waveform is known, for multiple signals with known waveforms and for a de-

but not its exact amplitude or phase. Other packets that sired signal with known waveform in the presence of in-

arrive around the same time am considered interfering terfering signals. We describe computationally efficient

S signals. In unslotted packet radio systems, the waveforms ML algorithms that avoid the need for a multidimensional

of the interfering signals are best modeled as unknown. search, as is required to maximize the likelihood function

In slotted packet radio systems, however, all the incident directly when multiple signals am present. For multiple

signals have known waveforms. This difference is due to signals with known waveforms, we present two iterative

the timing of the packets. In slotted systems, all packets algorithms for computing the angle estimates. One ap-

start at essentially the same time, at the beginning of a proach is based on the alternating maximization (AM) ap-

time slot. With the packets aligned in time, the presence proach of Ziskind and Wax [71 and the other is based on
of the known preambles means that each packet waveform the EM approach of Feder and Weinstein [11]. Our ap-

proaches differ from the AM approach and the EM algo-

rithm, however, in that we consider a uniform linear array
MaUmsscipt received Januay 29. 1991; tevised October 20,1992. I e - of sensors and we obtain the angle estimates by findingI-sacte editor coordinawu the review of this pape and appins it far polynomial roots rather than by searching over parameter

publication wax Prof. S. Uunikhriana Pitlsi. This work was smpouted im
pen by the Joint Services Pram under Contract N=1,49- space. For a signal with known waveform in the presence
J-1007 with the Ohio State University Research Foundation of interfering signals, we propose an iterative algorithm

J. U was with the Depnanment of Electrical Engineeriag. Ohio Sitte Ui" that combines the merits of the iterative quadratic ML
vanity. Columbus, OH 43210. She is mow with the Depsutmest of Elec-
trical Engineering, University of Florida. Gainesville, FL 32611. (IQML) approach of Bresler and Macovski [131, [6] and

R. T. Comp"o, Jr.. was with the ElectaScience Laboutory, Depart- the AM approach [71. It transforms the multidimensional
meat of Electrical Engineefing. Ohio State University. Columbus, OH Nd i se
43212. He is now with Coptm Res e .. Worhisga. OH 43065. h problem into an iterative one-dimensional search

MEE Log Number 9210126. problem. We compare the performance of these ML es-
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timators with each other and with that of a suboptimal ditive noise component,
estimator that first estimates the angles without using the i
signal waveforms or the desired signal waveform (the z.() " aP&(t)e-I°f- + n.Q) (2)
IQML estimator [61) and then determines which angle es- " I

timate corresponds to which waveform or extracts the de- where n.(t) is a zero-mean Gaussian noise process with
sired signal angle. We also present Cramer-Rao (CR) variance 02. The n. (r) are independent of each other and
bounds for these estimators and compare the performance the incident signals.
of the estimators to their CR bounds. Let x(), s(W), P(t), a, and n (f) be

The paper is organized as follows. In Section U, we I
formulate the problem. In Section Ill, we describe angle xt) - [x, (t) £2(f) • •• 1(f)]T (3)
estimators for multiple signals with known waveforms and 0() [s, 0) s20() ... • (0) (4) m
derive CR bounds for the estimators. In Section IV, we
describe angle estimators for a desired signal with known P(t) - diag ( p, (0) P2(). .(0- . pX(0) (5)
waveform in the presence of interfering signals. We also
derive CR bounds for the estimators. In Section V. we a - [ci a&2 ... ax]T (6) l
show numerical results and examine the performance of i (n) - [nI) W R2 (W) • • • (01 )]T (7)
the estimators. Finally, Section VI contains our conclu-
sions, where (.)r denotes the transpose. The received signal

vector has the form
II. PROBLEM FORMULAnON x(t) - A(6)s(t) + n (t) - A(6)P(t)a + x (t) (8)

Consider a uniform linear array with M isotropic sen- where A (8) (with 0 - [0, 02 . . . 0*,T) is the direction U
sors. The distance between two adjacent sensors is as-
sumed to be a half wavelength at the signal frequency. matrix, whose columns are the direction vectors of the

Suppose K narrow-band plane waves with known wave- incident signals
forms impinge on the array from distinct angles 6,, k = A (9) = [a (0,) a (02) ... a (9,)] (9)
1, - -. ,K, relative to the array normal. (By narrow band
we mean that signals received on different sensors differ with
only by a phase factor.) The number of incident signals a(O,) = [1 #k -.]r (10) 3
K is assumed known. (If the number of signals is un- and
known, it may be estimated as described, for example, in
[14].) Suppose that the signal from 6, has form *h - - (11)

sk(t) = akpk(0) (I) The array output is sampled at N distinct times t., n I
1, 2, • - - , N. The random noise vectors (t,) at different

where p, (t) denotes the waveform and ak the gain. sample times are assumed independent of each other. The
For multiple signals with known waveforms, p I(t), problem of interest for multiple signals with known wave-

P2 (), • ' ' , pt(t) are known waveforms that may be cor- forms is to determine the angles 0k, k - 1, 2, - - • , K,
related (or even perfectly correlated) with each other. To from the measurements x(t,), n = 1. 2, - - - , N. The
simplify the problem, we shall assume that when two problem of interest for a signal with known waveform in
waveforms ph (t) are perfectly correlated, they are actually the presence of interfering signals is to determine the de-
identical. In other words, we exclude from consideration sired angle 01. In the following sections, we describe three
the case where two pk(t) differ only by a phase factor. approaches based on ML estimation that may be used to
Such a phase difference between two p, (t) can be incor- solve these problems. I
porated into the definitions of the gains at, so there is no
loss of generality with this assumption. im1. MAXIMUM LUcEUHOOD ANGLE ESTIMATION FOR

For a signal with known waveform in the presence of MuLTiPLE SioNALS wrrfH KNwN WAVEFORMS I
interfering signals, the signal from 9, is the desired signal We first consider estimators for multiple signals with
and p, (t) is known. The rest of the signals ame interfering known waveforms and derive CR bounds for these esti-
signals and s2(t), • • , s(t) are unknown. The desired maori-
signal is assumed to be uncorrelated or almost uncorre- mators. I
lated with the interfering signals, i.e., E(s'(t)sQ(t)), k
= 2, 3, • - - , K, is zero or almost zero, where (-)* de- A. Angle Estimation Algorithms

notes the complex conjugate. Thus the desired signal One way of estimating the signal angles is to stan with I
waveform can be used to distinguish it from the interfer- the IQML algorithm of Bresler and Macovski [6], a max-
ing signals. However, the interfering signals may be cor- imum likelihood method originally discussed by Kuma-
related (or even perfectly correlated) with each other. "san et al. [13]. This method does not incorporate the

With K signals incident, the total signal x.,(t) received signal waveforms and does not tell us which angle esti-
at the ruth sensor is the sum of the K signals plus an ad- mate corresponds to which known signal waveform.

II
I • •' q
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However, we can augment the IQML algorithm by esti- The angle estimates obtained in this way are subopiu-
mating the received signal waveforms and then correlat- mal, because the waveforms are not utilized in forming
ing them with the known waveforms to determine which the estimates. Nevertheless, this is one method of deter-
waveform corresponds to each angle. We consider that mining the arrival angle for each signal waveform.
approach in pan 1 below. 2) Maximum Likelihood Algorithms that Incorporate

Then, in part 2, we present two algorithms that do in- the Known Signal Waveforms: Now we present two ML
corporate the signal waveforms. Both of these methods algorithms that incorporate the known signal waveforms
are based on maximum likelihood estimation. The two in the estimation. When all signal waveforms are known,
methods involve two different iterative procedures for maximizing the likelihood function is equivalent to min-
computing the ML estimates. imizing q, where [15)

1) The IQML Algorithm with Signal Correlation: One I N
method for estimating the signal angles, which we shall q - - [xQ - A(t)Pv.aJN[x(t.) - A(0)PQt)aJ.
call Method A, is based on the IQML algorithm [6], [15].
In this method, the first step is to use the IQML algorithm (16)
to estimate signal angles without taking advantage of the
known signal waveforms. The IQML algorithm itera- The minimization of q is done over if a is known or
tively computes the maximum likelihood angle estimates over (a, 0) if a is unknown.

and converges quickly. However, this algorithm, like To minimize q in (16) directly would involve either 1)
many others, may converge to a local extremum instead a K-dimensional search if a is known, 2) a 3K-dimen-
of a global one. Yet the first step of the IQML algorithm sional search if a is unknown and complex, or 3) a

I is equivalent to a linear prediction approach 116) with the 2K-dimensional search if a is unknown and real, or if at
linear prediction order equal to the number of incident = eJ', k - 1, 2, • - - , K, with Pt unknown and real. We

signals. For sufficiently high signal-to-noise ratio (SNR), describe below two iterative approaches that may be used
the angle estimates obtained with this first step are suffi- instead to avoid the multidimensional search. These ap-
ciently accurate that the convergence to a global extre- proaches are based on the alternating maximization (AM)

mum is guaranteed. approach to Ziskind and Wax [7] and the estimate maxi-
After obtaining the angle estimates 61, #K • from mize (EM) approach of Feder and Weinstein [ 1 I].

the IQML algorithm, we next use the known signal wave- These two approaches are given in a) and b) below.
forms to determine which waveform corresponds to which Both methods involve iteration on both a and 0. To begin
angle in the set 161, - • • , #J. To do this, we first esti- either algorithm, it is necessary to have initial estimates
mate the waveform of each incident signal and then cor- for a and 0. The initial estimate for 0 may be obtained by

relate these waveform estimates with the known wave- using the angle estimates resulting from Method A above
forms. The estimated waveforms of the incident signals or from other computationally efficient techniques such as
are obtained from #A, k = 1, 2, , K, as follows [8]: MUSIC, ESPRIT, or others [8], [9], [16). We let

9Q.) = [A'y(#)A(6)1]-AH ()x(tQ), 2 [eo *().

2 =1, 2 , N (12) be the initial set of angle estimates obtained with one of
= , •2 these methods. The initial estimate

where (.)" denotes the complex conjugate transpose, a() = [a a(0) "' a())T

A(s) fi [a(•1) a(•2) "'". a(•x) (13) for a is obtained as follows [15]. Of course, if a is known,

and we simply set
1(t.) = [0(t,.) 912 (t) -- A(t.)]. (14) a -a. (17)

Next, we correlate each waveform in 1(t) against all of But if a is unknown, a least squares method is used to
the known waveforms P&(t). Let qkh.' be the square of the determine a t0 ). Let
magnitude of the cross correlation between each signal N-
estimate I,(t) and the kth waveformpk(t) normalized with [ pH(Q,)AN((O))A(0(O)pQ,)
respect to the averagi power of pt (t), " 1 -

2 N1
P 0.) ' .) is P(tAN(0),x((

. N I s k, k' s K. (15) Then, if a is unknown and complex, we choose

i IP(t.)l a (19)
To determine which p (t) corresponds to a given Dt,, for If a is unknown and real, we let
each lk.(t), we choose the pk(t) for which #.k. is maxi-

I mum. at -Re (,y). (20)
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Of, ifa, - e foreachk, with 0& unknown and real, we B.2, is based on the EM algorithm I I I) and works as fol- I
choose lows. At each iteration, the observed signals z(t) are de-

)" (21) composed into their signal components plus noise [ I)),
and the angle estimates are updated individually from *

where 0(0) -... 2)]Tis these separate components. I
As the first step in the (i + I)st iteration, we decom-

=•))i arg (7). (22) pose the observed signals into their signal components

Now we present the two methods that iteratively compute plus noise. The purpose of this decomposition is to de-
the maximum likelihood angle estimates. couple the complicated multidimensional minimization of

a) A maximum likelihood method based on alternating q in (16) into K separate minimizations. For k - 1, 2,
maximization: The first approach, which we call Method • , K, we let
B. 1, is based on the AM algorithm [7). At each iteration, •'; (,);- + =) (9') P(t 8 )
a minimization is performed first with respect to 01, then kA ,P

with respect to a,, then with respect to 692, then with re- I"&"A
spect tO a2, and so forth. At the kth step of the (i + l)st + K [z(t.) ' & I
iteration, for k = 1, 2, , K, we fix

(•+÷) (, +, 1, ) (÷a .i_ (,) (23)

() it .Note that the first term of the right side of (23) is the kth
... " , ( signal component and the second term the noise compo-

We n (i+ 1) fn a nent. For the second step of the (i + I)st iteration, weWe compute S~t• ÷by fixing a*t and compute al ' by al Ulate )
c aluae and 61;" from x* + I)(t.) by solving for

(axinO"). h (+1 n (V 1) cacuat updand fro fro bfixing et÷. The 0•i) and ,h are updated from the zeros of a polynomial of order 2 (M - 1). The updat-
X k (t) whose mth element is ing of c'4 + ) and 0 (' + 1) is described in the Appendix.

&-I Method B.2 consists of the following steps:
z6 'k=Z I I + t)ef -(Q e 1) Initialize: Let i - 0 and obtain 0(0) using the IQML

K algorithm (or some other algorithm).
_ a,.p,.(t.)e--A' ' 2) Compute a(°) from (17), (19), (20), or (21).

k'=k+1 3)Fork= 1,2, - - •,K,obtaina0+t1 ) and 0'+from

by solving for the zeros of a polynomial of order 2(M - k 0.).

1). The updating procedure is described in the Appendix. 4) Check convergence: If

Method B.I consists of the following steps: Max 10-1l < E2
1) Initialize: Let i = 0and obtain 0(°) using the IQML &

algorithm (or some other algorithm). let 8 = 09(); otherwise, let i - i + 1 and go to (3). (2 is i
2) Compute a'o) from (17), (19), (20), or (21). a suitable convergence constant. I is the final estimate of
3) Fork = 1,2,- - -K,obtain)k('+ andak from.4c' ")(tn. TimehdawyatI alclI

4) Check convergence: If This method always converges at least to a local mini-
mum of q [11). But as usual there is no guarantee that it

max i9kVi÷ 1 < Ek will converge to the global minimum. Nevertheless, in
our examples, it has always converged to the proper result

let I - 09(; otherwise, let i = i + 1 and go to (3). (eI is in a small number of iterations. The reason is again that
a suitable convergence constant. 8 is the final estimate of the IQML algorithm has provided good initial angle es-
9.) tfiates. i

Methods B.1 and B.2 both minimize q in (16) item-
This method is bound to converge to at least a local tively. Within each iteration, however, Method B.2 corn-

minimum of q [7]. Since q is minimized at every step, the pates a&' and 90 '+|) in parallel while Method B. 1 comr-
value of q will never increase. However, it is possible that putes them aerially.
the algorithm may converge to a local minimum instead

of the global minimum. Nevertheless, in the examples we
have tried, it has always converged to the proper result in D. CrIner-RaO Bounds
a small number of iterations. This result occurs because Using the results in [17], we may obtain the Cramer-
the initial angle estimates obtained with the IQML algo- Rao bounds (CRB's) of any unbiased estimator of 0 for
rithm have been sufficiently accurate that the global con- both cases of known and unknown signal waveforms.
vergence has been guaranteed. 1) Unknown Signal Waveforms: If all signal wave- i

b) A maximum likelihood method based on the esti- forms are unknown, it has been shown in [17) that the
mate maximize algorithm: The second approach, Method mean-square error (MSE) of any unbiased estimate of 0
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-[ 01 02 ... J O]T is bounded below by the CRB, For c - eh, k - 1.2. --- . . with A, unknown
2 N r-1 and real, the MSE of any unbiased estimate of 9 is

CRB(O)- Re[SN(tQ)DN(O)PA,()D()S(Q)] bounded below by the CRB

( cRn(m - - {r - Jz((A)r[Re(A)]-'Im(A)-p. (35)

where Comparing the bounds in (24), (29), (31), (34), and

PA, (- [- - A(0) (AN (0)A(0)) AN(0)1 ( .) (35), we note that the ratio between any two of the bounds
is independent of the variance of the additive noise or the

S(t.) - diag is1 (:), 12(Q.), S2 (Q s-,,Q) (26) signal-to-noise ratio (SNR). Also, the bounds in (29),
(31), (34), and (35) will not change as long as S(t) or s& (t)

D(O) = [d(01) d(02) ... d(9,)] (27) - a&p t) is fixed no matter how we define aq and p&(t).i When S(t) is fixed, the SNR of each incident signal st(t)
with is fixed.

d(Oj) = [0 -jr cos (90k) #I, It can be shown easily that the bounds in (24) and (31)
are the same when the number of samples is N - 1. as

-j(M - 1)Trcos (8JO4uT-. (28) one would expect. (For N - 1, not knowing the value ofI complex a is the same as not knowing the only data sam-
2) Known Signal Waveforms: We present below the pie of the signals.)

CRB's for the four cases of known a, unknown real a, For N > I and uncorrelated signals, i.e.,
unknown complex a, and at = eiP', k = 1, 2, • • • , K, N

with Ok unknown and real. These CRB's have been ob- E s Z(t.)s (t,) = 0.
tained by modifying the results in [17] under the assump- a-I

tion that the signal waveforms are known. The Fisher in- k,, k2 = 1. 2. • - • , K, k, * k2  (36)
formation matrix for the general case where a is unknown
and complex may be found first. By deleting the col- we can show that the CRB (0) is a diagonal matrix when
umn(s) and row(s) of this Fisher information matrix cor- the signal waveforms are known. For a known and a un-
responding to the amplitude or phase of a, the Fisher in- known and real,
formation matrices for other assumptions of a may be 3a"
found. Detailed derivations of the results below may be CRB(0) = N(M _ I)M(2M - I) -2
found in [15].

For a known, it can be shown that the MSE of any { l a"
unbiased estimate of 9 is bounded below by the CRB •Tos ' P, cos2 0-

o 2CRB(O) =-- 2{ (r}- (29) (37)

where P& is the average power of the kth incident signal,
where

r = Re S(t.)DN (O)D(O)S(Q) . (30) P 1 IS&Q.a)1 2. (38)
La-I -a~ . Na-iI For a unknown and complex, the MSE of any unbiased " For a unknown and complex and ak = e•O', k - 1, 2,

estimate of 0 is bounded below by the CRB • , K, with Ok unknown and real,

CRB(O) =_ •j-r - Re(ArA-'A)V-' (31) CRB(O) v2-

2 ~~N(M 2 - )r

where N • [1
A = N S"(t .)A v(O)D ( 8)S(Q (32) P C

a-= (39)

N
A - Z SH(t)AN()A (9) S(tQ). (33) Note that for this case of uncorrelated known waveforms,

I I the CR bound of an angle estimate is independent of the

For a unknown and real, the MSE of any unbiased es- presence of all other incident signals, no matter how
timate of 0 is bounded below by the CRB closely spaced these other signals am. Note also that the

CR bounds for the cases of known and unknown phases

CRB(e) - (f _ Re()[Re (A)]-'Re (A))-. (34) of the incident signals $ (t) differ by a factor 2(2M -
2 1)/(M + 1), as seen from (37) and (39). For large M,
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2(2M - 1)/(M + 1) is about 6 dB. This 6 dB improve- Since the desired signal is assumed uncormlated or almost
ment when a is known or unknown real is consistent with uncorrelated with the interfering signals, the estimate of I
the CR bounds obtained for the frequency estimate of a the desired signal angle. 91, is the element in the set {(1,
single sinusoid in Gaussian noise derived in [18]. This 12, . . ., .IN) that corresponds to the maximum (q1, #2,
improvement occurs because signal arrival angles depend " "- , #K). (The rest of the angles in the set 111, 12, " - "
on the phase differences of the signals received at different 1 ) are the interfering signal angles.)
sensors and knowing the phases of the signal waveforms 2) A Maximum Likelihood Algorithm that Incorporates
helps improve the angle estimates. Note also that the kth the Known Waveform: Now we present an ML algorithm
diagonal element of the right side of (39) is the same as that incorporates the known desired signal waveform from
the CR bound for the case of a single signal with unknown the beginning. We shall refer to this method as Method
waveform arriving from 8A [171. This result shows that for D. It is easy to show that in order to include the known
the case of a single incident signal, the CR bounds are the signal waveform in the estimation process, we should
same for the case of unknown waveform and for the case minimize the quantity [15]
of known waveform with a unknown and complex or a I N
= eJ0, with $ unknown and real. Finally, we note that as q - - ! 1z.)PAL(e, )XZ(t,) - U(PA0,, )RJ) (41)

for the case of unknown signal waveforms, the CR bounds N

for all of the known waveform cases are inversely pro- where 9, = [02 03 • g - T •-
portional to the number of data samples N.

For coherent signals, we can show that the CR bounds X0(t.) = x(Q) - a(O,)a, P1 (t.) (42)
are also inversely proportional to N. For this case, the CR
bounds go to infinity as the angle separation between two PA,(#,) = I - A(Oj)[AjA(O)A(9,)]-tAH(0j) (43)
signals goes to zero. It can also be shown that the CR an
bound for the case of known coherent signal waveforms and
with a unknown and complex is the same as the CR-bound 1 N

for unknown coherent signal waveforms, i.e., (31) and R,(6 ) = T ==V- X,(0)X•(t.). (44) I
(24) are the same for coherent signals. The algorithm we propose for minimizing q is again an

iterative approach similar to the alternating maximization
IV. MAXIMUM LIKELIHOOD ANGLE ESTIMATION FOR A approach of Ziskind and Wax [7]. At each iteration, a

SIGNAL WITH KNOWN WAVEFORM IN THE PRESENCE minimization is performed first with respect to a, (if a,
OF INTERFERING SIGNALS is unknown), then with respect to 9, and finally with re-

We next consider estimators for a desired signal with spect to 09 [15].As the first step in the (i + I)st iteration, we fix 0• and
known waveform in the presence of interfering signals and 0 te If aIt is known, we simply set
derive CR bounds for these estimators.

(i+I) (
A.A geE tm to lo ih sal C1 --- 1. (45)

A. Angle Estimation Algorithms However, if a, is unknown, we minimize q with respect

The desired angle estimate may be obtained by aug- to a•÷ " . By substituting (42) in (41) and setting deriva-
menting the IQML algorithm and by using the known de- tives with respect to the appropriate variables to zero, it
sired signal waveform to determine which angle corre- is easy to show that if aI is unknown and real,
sponds to the desired signal. The angle estimate may also N
be obtained by a maximum likelihood estimator that prop- aIN(0 () PA Z p- -) (0 Q)erly incorporates the own desired signal waveform in ) Re
the estimation process. aOi) N

1) The IQML Algorithm with Signal Correlation: The a(,) Z p,(t,.)12)
approach we consider below is similar to Method A and 0 1 1
is called Method C. In this approach, we first obtain the (46)
angle estimates 1, ""- - *, I from the IQML algorithm m
and compute 9&(t), k = 1, 2, ''' , K, as in Section • f s unknown and complex,I
M-A I. Next let #& be the square of the magnitude of the N

cross correlation between each ,, (t) and the desired signal "(80) ,PA 7- P p Q(.) (X,.)
waveform p, (t) normalized by the power of rt(t) al N ' II

-pI (tI.)S (I.) I,3 (t)12

N k-i,2,--,K. (40) andifa,meJO'with01unknownandtreal, I
0-1 Iaa(tn)Iil eel (48)
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I whene 6) Check convergence: if 0('÷1" -O*"I < ,,iet1I -

0, otherwise, let i - i + I and go to (2). (#3 is a suitable
+ 1) V small constant. #I is the final estimate of 01.)

4 1i • a (0 (1O) PA 1 ( Z p 0(t()X N,). (49) This algorithm is again bound to converge to a local
minimum [7]. However, as usual, there is no guarantee

For the second step in the (i + i)st iteration, we solve that it will converge to the global minimum. Neverthe-
for 90' ') by fixing a ' 't and 0 . For this step, we min- less, in the examples we have tried, it always convergesimize q by applying the IQML algorithm to xy +)(t.), to the proper result in a small number of iterations due to
where good initial angle estimates obtained with the IQML al-

gorithm. In general, the number of iterations required
Xy" O.(t) - X(S,) - a(0 'o)a 1 ÷)P, (t.). (50) drops as the angle between the desired and the interfering

signals becomes larger. In our simulation examples, fewer
In this case, the initial polynomial for the IQML algo- than 10 iterations were needed. The number of iterations
rithm is chosen so that its zeros are e-J"014', k - 1, 2, required by the IQML algorithm in Step 4 was fewer than
• ,K. 5.

For the last step of the (i + l)st iteration, we fixI ~(i +) (1)ar and 9,(+1) and then find 0 + ". 0 ('+') is the value B. Cra r-
of 01 that minimizes

Using the results in [17], we may obtain Cramer-Rao
qQ+,)(0 1 ) = tr{PA,(•,.-,R•?+')(0j)). (51) bounds (CRB's) for any unbiased estimator of 01 for the

case of known desired signal waveform [15].
r +) is obtained wIf a, is known, it can be shown that the MSE of any

The required solution for 0 s9baie with a one- unbiased estimate of 9 is bounded below by the CRB,
dimensional search. We limit the search domain to (0 (" -
7, 0 + )), where -y is chosen according to our confi- N I(5
I dence in (0). - ( t, (52)

To summarize, the ML algorithm that utilizes the
known desired signal waveform consists of the following where

i steps: steps:F(t,) - Re[S H(t.)D N(O)PA,(@,)D(O)S(t.)]. (53)
1) Initialize: Let i = 0 and obtain 0? and 00 using the

IQML algorithm, as described in Method A. If a, is unknown and complex, the MSE of any un-
biased estimate of 0 is bounded below by

CRB(O) = 2 .{ FQ.) - --[ (4)]))I .. ,,~.

where

2) Update a"i+ ) from (45) if a, is known, (46) ifa, f(t) - $N(tN)DN(e)PAL(,,)a(e,)s,(t.) (55)
is unknown and real, (47) if a, is unknown and complex,

or (48) if a, = eJo' and 01 is unknown and real. and
3) Compute xYi + 1)(t.) using (50).
4) Compute 90(+ " by applying the IQML algorithm to ' (t,) - Is, (t )2.N(9i)PA,•,) (9 ). (56)

5) Find 891+ + that minimizes q('+ 1)(01) in (51). If a, is unknown and real, the MSE of any unbiased
estimate of 9 is bounded below by

c'•e)= •). .Fi)- (57)
CNI Re [ f(t.)] f(4)

CRB(O) r (t.)N (57



U AM COMO: ML APOLB IMAflOW iW

Finally, if a, - e' with 01 unknown and teal, the MSE of any unbiased etimate of 0 is bounded below by

CUMprn - 12- zn.) (24), ( , (t [, I(] (
2 / n-ia Q

Comparing the bounds in (24), (52), (57), (54), and-
(58), we note again that the ratio between any two of the 10. Thus
bounds is independent of the variance of the additive noise 3 andthenumber ofasensolu s iassumed M t a is 2/(M
or the signal-to-noise ratio. Also, the bounds in (52), (57), the Rayleigh angle resolution limit for the ar1y is 2/(M
(54), and (58) are independent of a, as long as sl(r) is We1) rad or 12.73". i
fixed so that the SNR of the desired signal is fixed. We first consider the case of multiple signals with

It again can be shown that the bounds in (24) and (54) known waveforms. For the curves below, it is assumed
are the same when N - 1, as one would expect. ForN> that two signals arrive from Ni - 30 9n 2 - (30 -

I, we can show that the CR bounds for all cases of the AS) , so AO is the angle separation between the signals.

known desired waveform are inversely proportional to the For the first series of curves, the two known signal wave-

number of data samples N. forms are from two different PN sequences with low cross-

Also, by using PIAI4A2I = PA, + PA-L - I, where A3 in correlation. Thus the incident signals are almost uncor-

PAA A 2, it can be shown from (54) and 4) ) that the Q related (or noncoherent). Fig. I shows the CR bounds for
bounds for the desired angle estimate are the same for the the root-mean-square errors (RMSE's) of 81, i.e., thecases of known and unknown desired signal waveform square root of the MSE's of 0,, as a function of A6. (The
whsenis uknown and cowples. curves for the other angle estimates are similar.) Fig. Iwhen ais unknown and complex.shwthticroanghek wninlwvfrm

Finally, it can be shown from (52) and (58) that for the shows that incorporating the known signal waveforms
cases of a single interfering signal with a& known or with significantly improves the CR bounds for 8,, especially

a, - eJ' but P, unknown and real, the CR bounds for for small AO. For this case of known waveforms, the CR i

the desired angle estimate will remain finite even as the bounds for 8, depend little on AO, as discussed in Section

direction of the interfering signal approaches that of the III-B. Fig. i(a) shows that for large AO, where the inci-

desired signal. However, as the directions of two or more dent signals have little effect on each other, the improve-

interfering signals approach the direction of the desired ment due to incorporating the known signal waveforms is

signal, the CR bounds for the desired angle estimate will about 6 dB when a is known or unknown and real. How-

go to infinity for all assumptions of a ever, Fig. I(b) shows that little improvement is obtained
go t i ofor large AO when a is unknown and complex or when a& U

- e*&, k - I, 2, with the A& unknown and real. These -
V. TyPc.. RESULTS results are again consistent with the discussion in Section

In this section, we show typical performance changes m-B.
that result when all known signal waveforms or the known Fig. I also shows the performance results, i.e., the
desired signal waveform are incorporated. The examples RMSE's, for Methods A, B. 1, and B.2 obtained by using
illustrate the conditions under which incorporating knowl- 50 Monte Carlo simulations with independent trials. The
edge of the known signal waveforms in the ML estimator convergence constants used in the iterative algorithms i
can improve the accuracy of the angle estimates or the were chosen to be el - 2 - 0.005'. We note that the i
desired angle estimates. For the curves below, each in- ML estimates from Methods B. 1 and B.2 are very close
cident signal is a BPSK (binary phase-shift keyed) signal to the best unbiased estimates one can get. (Because of
modulated by one period of a 3 1-b pseudonoise (PN) se- the limited number of Monte Carlo simulations, the RMSE
quence [4]. The incident signals s (t), k - 1, 2, have unit orves may occasionally fall below the CRB's.) Note also
power at each sensor and are sampled at a rate of one that comparing the performance of Method A with that of
sample per bit. For the case of unknown complex a, we Methods 3.1 wad B.2 is similar to comparing the CR
assned a - [2e,1'4 2-eJh/3]j. For the case of un- tounds for 01.

nown real a, we assumed a - 12 2]J. For the case of Fig. 2 shows the average number of iterations needed
a, - eA' with unknown mal At, we assumed fl - to obtain convergence in Methods B.I and B.2. Note that
(w/4 -r/ 3]. Note that the gains a are set at the given Method B.1 requires fewer iterations than Method B.2
values for the simulations and the waveforms p&(t) when a is known or unknown and real. For small AO and
clunged accordingly, and the incident signals st (1) ar as- a known or unknown and real, Method B.2 is not as at-
emned the same for different values of a. The SNR at each cractive as Method B. 1 since the number of iterations re-

emor output, defined as -10 logo a' dB, is assumed to quined by Method B.I is less than half as much as re-
be 20 dB. The number of dsat samples is assumed N - quired by Method B.2. On the other hand, Method B.2
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I OoFig. 2. The number of iterations versus At for multiple Ncwm Pa me sig-

Ang•ll Separaion(deqp) nals with known waveforms. Solid curve with symbol X: Method B1.1;
solid curve with symbol +: Method 5.2. For Mehd B. I and 51.2, we

(b ) assu m e ( a) a kn o w n o r a u n k no w n real and (b) a a k no w n co m p le x o r ft
Fig. 1. Root-mean-square errors aind the corspning; CR bounds of 1, - e 1, k -, 1. 2. with 0, unknown real.

versus At for multiple soncoheemt signals with known waveforms. Solid
curve: known signal wavefofma; dashed curve: unknown signal wave-
foetms. Symbol o: Method A; symbol X: Method B.I1; symbol +: Method little effect on each other, the improvement due to incor--
B.2. For known signal waveforms, we assume (a) a known or a unknown
ma,and (b) aunknownecomplexor a,- e In, k- 1, 2, with Okunknown poratinS the known signal waveformsis about 6dB when
raw. a as known or unknown and real. However, Fig. 3(c)

i shows that little improvement is obtained for large AO
when C4 -- e A, k - 1, 2, with tbe dP, unknown anid real.

requires fewer iterations than Method B. I when a is un- Fig. 3 also shows that for small A#., the lowest CR bound
known and complex or when a& - e J, k - 1, 2, with Ok is achieved when ais known. Fig. 3(b) and (c) show that

iunknown and real, especially for small A#. For the later for small At with coherent known weveforms, the CR
two types of a, Method B.2 is more attractive since it con bound for a& - eJA with PA unknown andreal may be
be used to compute angle estimates in parallel during each lower than the one for a unknown and real. This reult

i iteration. shows that the knowledge of the amplitudes of the indi-
For the second series of curves, the two known signal dent s~ignas st(t) may be used to bete distinguish closely

waveforms arm from two identical PN sequences, so the spaced coern incident signals. Fig. 3 also shows the

ceptf fore the d ohesignall coherencee, aloldl paramesterse frm usedd belowd Btiniden sintl thoheent perecty crreated. Meprtohodesreult fo and B.2B.!,and .2.Not

am etheagame as above. The cane of a unknown and com- close to the best unbissed estimates one can get. Our sim-
plex will not be shown below since as shown in Section ulations dxnv that the average number of iterations neded

i III-B 'h:for this case, the CR bound wre the game for 'for both Methods B.1 I nd B.2 and for 8,11 came of a is so
known and unknown waveforms, more than 6. Out simulations also allow that the average

Figl. 3 shows that the CR bounds for the RMSE's of number of iterations required by Methods 9.1 or B.2 is
asb for coherent signals with known waveforms are fuinc- almost the same for the case of coherent signals. For this

tin- of AtP. This result occurs bemause since the known case, therefore, Method B.2 is more attractive since it can
waveforms ame identical for this case, they cannot be used be used to compute angle estimates in parallel durin each
to distinguish the incident signals. Figs. 3(a) and (b) show iteration.

iagapin that for large At, where the incident signals have We next consider the cane of a signal wit h known wave-
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bounds for the desired angle estimate I, as a function of APENDV(

AS. The convergence constant used in Method D was cho- In this Appendix, we consider the case of one incident
sen to be e3 - 0.005*. Note that the ML estimates ob- signal with known waveforn pQ). For this case, both a
mined from Methods C and D are very close to the best and 0 are scalars. The maximum likelihood (ML) esti-
unbiased estimates one can get. Fis. 4(a) and (c) show mates of a (if a is unknown) and 0 are found by mini-
that the CR bounds for the desired U, remain finite for a, mizing the quantity (see (16))
known and a, - e•j' with P, unknown and real even as ,,
AO approaches zero, as discussed in Section IV-B. This q = 1 [1V0.) - 8(@)p0,)aj][X(t.) - ,(G)p(:)ja].
result shows that closely spaced desired and interfering TN -J
signals can be distinguished by knowing the desired sig- (59)
nal s, (t) or knowing the waveform and amplitude of s, (t).
For small AO, Fig. 4 shows that the smallest CR bound is Dropping all terms not involving a and 0, we get
achieved when a' is known. Figs. 4(b) and (c) show that U
for small AO, the CR bound for a, - t•e with 01 un- q = [-ae -Ih ,y, - ae-j-I,,y
known and real may be lower than the one for a, unknown M-1
and real. Figs. 4(a) and (b) shows again that for large AG, + jaj2Q (60)I where the interfering signal has little effect on the desired
signal, the improvement due to incorporating the known where we have defined
desired signal waveform is about 6 dB when a, is known I N

or unknown and real. Fig. 4(c) shows that little improve- YM Z, X.u(Q)P*(ta) (61)
I ment is obtained for large At when a, - e•' with the P,

unknown and real. and
We also considered an example where the desired sig- 1 NI nal arrives from 0, = 30° and two interfering signals ar- Q = p(t)2. (62)

rive from 02 = (30 - AG) 0 and 03 = (30 - 2&0)*, so AG T ()t
is the angle separation between the signals. Moreover, the
interfering signals are assumed coherent. Our numerical A. Unknown 0
results show that when the directions of the two interfer- The value of 0 that minimizes q is found by setting the
ing signals approach the direction of the desired signal, derivative of (60) with respect to 0 to zero. Setting dq/do
i.e., AG approaches zero, the CR bounds for all assump- to zero yieldsI tions of a, go to infinity, as discussed in Section IV-B. M

VI. CONCLUSIONS a 1 (m- -)y:zm-,

We have presented maximum likelihood algorithms that N
incorporate knowledge of multiple known signal wave- - a* (m - l)y.,z-(N-I -- 0 (63)
forms with known or unknown gains or a known desired M"
signal waveform with a known or unknown gain into the where
process of estimating the signal angles with uniform lin-
ear arrays. These algorithms avoid the complexity of a z - e (64)

multidimensional search. For the case of multiple signals To obtain the appropriate solution to (60), we must takeI with known waveforms, we presented two algorithms that into account the assumed form of a. For the simplest case,
compute the ML estimates iteratively and converge in a when a is known, we obtain the ML estimate of 0 by
few iterations. For the case of a desired signal in the pres- finding the zeros of (63) and then using (64).
ence of interfering signals, we presented an algorithm that When a is unknown and complex, setting dq/(d Re
transforms the multidimensional search problems into an (a)) and dq/(d Im (a)) to zero and solving for the result-
iterative one-dimensional search problem. For compari- ing a gives
son, we have also used the IQML algorithm augmented
to determine which signal waveform corresponds to which a o- YZ (65)
estimated angle or to extract the desired signal angle. ana
Curves were presented that compare the performance of

-- the ML estimators with each other and also with the IQML Substituting (65) into (63) for a and canceling unneces-
algorithms. Both the actual performance and the Cramer- eary terms yields
Rao bounds were shown under several assumptions for N N
the signal gains or the desired signal gain. These curves Z - (Fm, - m2)y-yaz. -I - 0. (66)
show the conditions under which incorporating the mul- *2- I

tiple known signal waveforms or the known desired signal In this case the ML estimates for 0 and a am found by
waveforms in the estimators improves the angle esti- solving for the zeros of (66) and then using (64) and (65)I mates. to get a and 0.
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For the case where 9 is known and a- isuaiknown, a
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bwwnm and complex, wnknown and real, or a - eJ$ withI
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j . EM Diffraction by a Resistive Strip Attached to an

Impedance Wedge

I R. G. Rojas and M. Otero

The ElectroScience Laboratory
Department of Electrical Engineering
The Ohio State University
Columbus, OH 43212, USA

Abstract-The high frequency electromagnetic diffraction by a finite length resistive strip
attached to a wedge with equal impedance faces is presented. The problem considered
is two dimensional where the incident field is a plane wave polarized TM or TE to the

axis of the wedge. Since the scatterer has two points of diffraction, the original problem
can be first broken up into two simpler canonical problems which, due to the symme-
try of the scatterer, can be obtained by a proper combination of special cases of the
well known Maliuzhinets impedance wedge solution. A uniform asymptotic solution of

these two canonical problems is developed which is continuous across the various shadow
boundaries. This analysis also takes into account interactions between the two points of
diffraction and points of reflection up to third order where spectral techniques are used to
obtain the fields which are multiply diffracted and reflected as well as transmitted across
the resistive strip. Incorporating these higher order interactions enhances the accuracy
of the solution. Several numerical results are presented including comparisons with an
independent moment method solution.

I. INTRODUCTION

For many applications, it is desirable to reduce or modify the electromagnetic
scattering characteristics of a wedge shaped object. If the surface of the scatterer
is conducting, it may be coated with radar absorbing materials to reduce its
scattering. Such thinly coated conducting surfaces can often be approximated in
the analysis by a Leontovich (impedance) boundary condition on the wedge faces.
Although coating the surface will reduce the specular component of the scattered
field, it may have little effect on the field which is diffracted from the wedge tip.
Attaching resistive cards to the edges of scatterers is a well known technique for
reducing scattering and was very successfully applied to reduce the echo width
of a semi-infinite perfect electric conductor (PEC) half plane [1-2]. It seemed
appropriate to extend the use of resistive cards for reducing the scattering from
the wedge tip. Therefore, the configuration chosen in this paper [3] is a wedge
with impedance faces with a resistive card attached to the wedge tip (Fig. 1).

To analyze this configuration, the method used is the Uniform Geometrical
Theory of Diffraction (UTD). This is a high frequency technique which is useful if
the size of the scatterer is on the order of a wavelength or larger, as opposed to a
numerical technique, such as the method of moments, which is primarily useful at
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low frequencies. Compared to numerical techniques, UTD provides better physical
insight into the scattering mechanisms of the object. It also allows us to reduce
the original configuration into a number of simpler configurations. Therefore, the
solution can be obtained by a superposition of solutions to more fundamental,
canonical problems. Keeping in mind that in the high frequency regime, the
scatterer depicted in Fig. 1 has two points of diffraction, i.e., Qi and Q2, the I
two fundamental problems to be solved are the scattering from a semi-infinite
(half plane) resistive sheet with Qi at its edge, and a semi-infinite resistive sheet
attached to an impedance wedge at Q2. Note, as shown here, the solution for the
former can be obtained from a special case of the latter.

ZW

Figure 1. Resistive strip attached to a wedge with impedance faces. i

It is worth pointing out that the original goal was to obtain a solution for the
wedge in Fig. 1 with difference impedance values. However, it turns out that

the problem of diffraction by the junction of a resistive half plane and impedance I
wedge with different impedance values on its faces yields a second order functional
difference equation for which, to the best knowledge of the present authors, no
solution has been found. Thus, the next logical step was to assume that the faces Is
of the wedge have equal impedance values. However, due to the symmetry of the E
scatterer, it will be shown here that it is not necessary to do a complete analysis of
the mixed boundary value problem for the junction problem. Instead, the solution

for the resistive half plane to impedance wedge (with equal impedances on both
faces) junction can be obtained by an appropriate combination of special cases of
the well known Maliuzhinets solution to a wedge with different impedances (4].
Once the canonical solution to the junction problem has been solved, that solution I
can then be used as a building block to construct the solution to the more complex
geometry of Fig. 1. A special case of the resistive half plane to impedance wedge

jucinis the planar junction of a resistive half plane to an impedance (equalI
impedances on both faces) half plane which corresponds to n ff 1 in Fig. 1. e

This latter geometry is analyzed by Uzg6ren et al. f[161 by means of the Wiener- I
I
I
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Hopf technique which is suitable for planar geometries. It can be shown that the
solution obtained here, which is based on the Maliuzhinets method, reduces to the
simpler case considered in [16]. Furthermore, note that in the geometry depicted
in Fig. 1 the resistive strip is of finite length, whereas, in (16] only a resistive half
plane is considered.

Since there are two points of diffraction, namely Qi and Q2 in Fig. 1, multiple
diffraction mechanisms between these points will be included in this analysis. This
is handled by a spectrally extended ray technique. Note that in this analysis, the
interaction of the fields that diffract from the resistive edge and the fields reflected
from the wedge faces are also taken into account.

This paper is organized as follows. In Section 11, the method of analysis and the
solution for the two canonical geometries, i.e., resistive half plane-wedge junction
and resistive half plane by itself, will be discussed. In Section III, the multiply
diffracted fields will be analyzed by means of a spectrally extended ray technique.
In Section IV, numerical results will be presented and a brief discussion on the
physical interpretation of the results will be given. Finally, in Section V, some
concluding remarks will be given. Throughout this report, it is assumed that the
fields have an e-" t time dependence.

II. METHOD OF ANALYSIS

As pointed out in the previous section, the original problem depicted in Fig. 1
can be solved by first solving two canonical problems. The first fundamental
problem to be solved is the diffraction from a semi-infinite resistive sheet attached
to an impedance wedge for a plane wave incident field (see Fig. 1 with L --#
oc). This is a two-dimensional scalar problem since the incident field has no z -
dependance and can either be TMz or TE,. Using cylindrical coordinates, the
wedge axis is coincident with the z-axis, the resistive sheet is in the zz-plane,
and the angles 4 and 0,' are measured positive from the resistive sheet. The
angle between the resistive sheet and the wedge face is nmr. Note that -nir <
4, 5 nir, whereas, without loss of generality, it is assumed that 0 _< •4_< nir.
The wedge faces are impenetrable with a surface impedance Zwv, whereas the
resistive sheet is a penetrable surface with a surface resistance P,. For purposes of
analysis, a somewhat more general problem depicted in Fig. 2(a) will be considered
in this section. The scatterer of Fig. 1 can be recovered by letting Rc go to
infinity. The analysis of this problem can be further simplified by using an even
and odd mode analysis. The equivalent problems obtained in Fig. 2(b) are derived
taking into account that the resistive boundary condition states that the tangential
electric field is continuous across a resistive sheet; whereas, the discontinuity of
the tangential magnetic field is proportional to the tangential electric field, i.e.,

ii x (,t+ -k•) =0

Sx x = x n-)(1)

where the subscripts (+) and (-) denote the top and bottom faces of the resistive
sheet, respectively. Also, fi is a unit vector normal to the surface of the resistive
sheet directed from the (-) side to the (-) side, and 7 and I'T are the electric
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and magnetic fields, respectively. Figure 2 shows how the original problem is

decomposed into a superposition of the even excitation and odd excitation cases.
The even excitation case is then equivalent to mounting the resistive sheet over
a PEC ground plane for the TE2 case or a perfect magnetic conductor (PMC)
for the TMz case. The odd excitation case is equivalent to the even one except
that the PEC and PMC ground planes are interchanged. The canonical problem I
now to be solved is the scattering from a wedge with different impedance faces,
where the solution is valid in the region 0 _< 0, 0' _5 nw. The superposition
of the even and odd cases results in a solution to the original problem where
the resulting scattered field is valid everywhere in the region -nir :5 _5 nraw.
Note that the even and odd mode analysis shows that the second order functional
difference equation alluded to in section I for a wedge with different impedance
faces must reduce, for the configuration shown in Fig. 1, to two uncoupled first
order functional difference equations similar to those obtained by Maliuzhinets [4].

awa

(a) I

V1 2s~' 1/2 L('V$'?j' Z"

..... ... + c Q2

1/2 uo 1 -t) /2 Uef.'

Uv 'ECTATO OD0 IXCITATION

Tz:1/2 Z1 '4P " 1/2 ul~~p)~

Zb Z b a Z

PIC PM~

M,' 1/2 Pi',,•Fi 1/2 u.L (,,•% iV
zeZ&Zb Zb z

- +
(b)

Figure 2. Even and odd mode analysis. (a) Original configuration. (b)
Equivalent configuration where Za = 2Pa, Zb = 0 and Z, -
2Pc.
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Now the solution to the problem of the scattering from a wedge with impedance
faces Z, and Z,, where 4 is measured from wedge face Z. and ranges in values
from 0 = 0 to 0 = nr at the impedance face Zw, will be briefly reviewed. The
faces of the wedge satisfy the impedance or Leontovich boundary condition, given

* by X- 4.'K)= X1TZi

0={O, (2)

where , is the unit vector normal to the impedance faces i (i = a for 4 = 0,
i = w for 4 = nr), Yi = 1/Zi. As stated above, when the fields have no
z-dependance, it can be shown that the problem can be reduced to two scalar
problems, namely, TMz, Ez 6 0, H, = 0 and TE2 , Ez = 0, H, : 0. Thus, let us
define the scalar function U as follows

* u {Ez forTMz (3)Hz for TEz(3

The technique used to solve the resulting scalar problem is that which was
developed by Maliuzhinets [4]. This method consists of expressing the total field
as a spectrum of plane waves which can be written as an integral over a spectral

funtio U(p,4) = a tj(o+2-4,, v+eh)e-ikPcodo (4)

where p is the distance from the tip of the wedge to the point of observation and
it is assumed that the incident field is given by

UinC(p, 4,) = UOe-ikpcos(O-0') (5)

The spectral function t in (4) can be written as follows:
t (a•, veh)= •,_(o_,,h, Vwh, )(6

'T(. 0% €,,,,h, ,,eh)()()

sin(#-)/nsin(!) - cos(f)(7

The function ,I(a, ah, v~eh) can be written in terms of the well known Mali-
uzhinets function On(o) 14] and is given by

(c, ve,1, e h+ 2r ve~h _F 7r ( r +" + ,~

on(a~+4 7r) On (a - 2r Me"h + (8)
where

Za,w/jo for TEz,= v (9)

and q, is the free-space intrinsic impedance. The integration path in (4) is along
the twofold Sommerfeld contour -y shown in Fig. 2 of 16]. This means that the

I
I
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scattered field from an interior impedance wedge in the form of a spectral integral
is available for further analysis.

II.A Junction of Impedance Wedge and Resistive Half Plane

The next step is to combine the even and odd solutions as depicted in Fig. 2
to obtain the fields for the wedge-resistive half plane junction Q2 shown in Fig. 1
with L -+ oo. Keeping in mind that the origin of the coordinate system is Q2
and the angles 4, and 0,' are measured from the face of the R, resistive strip, i
the total field can be written as follows (-nw < 0 :< nw, 0 4,' < nw)

UWC(Q 2) 1+ 41 sgn(4,)t(O ehU(p, 0) f 2 1i [V 2 - ,e"h) + (a + 2 - I41, v''h)

e-ikpcosada (10)

where sgn(z) is the sign function defined as follows
I for z <0sgn(X) ff 1 for X > 0

The spectral functions U",(c, v) are given by (Z. = 2Ra)

TE,: vUO(ozWh) = n(,)

(TV(~.,h) = sin(f ,"- D 'tn(Vo - f+ .- ~k~Z-i+ Uua

TM,: (Jv(,v) = [1, vo',,,h)

TO( o, = (o - Y + .' - n(o VW' + 1 (o (12)
S (.e(V - 0 - On) .(-P.j + f - ,')

Note that in (12) the expression for 0JV(o, ve) for the TMz case is obtained from
the previous expression for (-o(a, vh) for the TE, caw with uh replaced by Ve.

Although (10) cannot be evaluated in closed form, having this integral in the
form of a spectrum of plane waves is particularly useful for evaluating multiply
diffracted fields as will be seen later. An alternative and more useful representation
of this integral can also be obtained (shown in the next section) by deforming the
original contour -y into two steepest descent contours. I
Il.B.Asymptotic evaluation of Diffracted Field

The integral in (10) is now evaluated asymptotically by deforming the Som-
merfeld contour as shown in Fig. 4 of [6].

Contributions from integrating along the SDP gives the difiracted field,
Ud(p, 4), while the residues from encircling the G.O. and S.W. poles give rise I
to the G.O. and surface wave fields, UG.O.(p, O) and US.W.(p, 4,), respectively.
The total field can then be expressed as

U(p, 4) = UG.O(p, 4) + US W.(P, 4) + Ud(p, 0) (13) I
I
I
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To somewhat simplify the analysis that follows, it is assumed that • <n 5 1 in

the rest of this paper. Note that in most practical applications • n.
Thus, the G.O. field is given by

for 0 •0_<nw:

uGO(p, 4,) Uc(, 4,) + [r(', v) •1 ue-ikPc(#+')S( - - ,')

+ r(nw - 4', vz.) Uoe-ikPcoG(-O+'--I)S(,(, + 0' - [2n - 1]w)

+ r(. + 0', v.') Uo [r( T-, 1:h) 1] • (#-#'-2)
s(O - ' -[2n 1]1r) S(-O + 0' + nr) + !rn ', v.*)

* U0 [r(2nw - 0,', vt.) : F] e-1ikP co(#-'+#2 f)S(O - 4,' + n-.)

I .s(-,+4' - [2,- 11) ; (14)

SUG O-( , 4,for 
- n < _,:0 :

2[1 ± r(e, P,"b] uoe-ikpcc(-#+O')s(-r + - 01)

+ •r(nw + 4,', ,ehA) [1 : r(', v:')] U o,- c(-#-'-2nr)

S(-O - 4' - [2n - 11r) S(w[1 - n] - 1')

+ !r(ni. - 4, •e) [1 ±= r(of, V:,A)] U co-(-#-#'-2n")

.S(0+0'-[2n-1jw)S(O'-[2n-1Jir) ; TM (15)

where S(z) is the unit step function defined as follows

0 forz<O (16)S(.) =11for z >

and r(o%, v) is the Fresnel reflection coefficient, namely

r(v,) -sinV (17)
sin of + sin P

It is noted that the expressions in (14) and (15) would include additional multiple
reflected terms for values of n less than i.

A surface wave pole arises from the singularity in the function *(a + , --

4,, va, v.) which occurs in the spectral function given in (12). If this pole is
captured by the contour, it corresponds to a surface wave propagating along the
face of the wedge which is given by

I
I
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us w(p, 4,) = W Q�2)21

TE:sw(P' Uinc(Q2)

a.o.. , ( z'p) +2S( 101 - O'M.) (18)

where Vvw= v.,,R+ ~ip., all= L,,.h - w+I4 nw, * ~nw + vw*t+

sgn(v.j') arccos )and r, is the residue for the corresponding spectral

function given in (12) evaluated at a = a., with Zw~ as the impedance o( the

wedge face, nmly.(/ ~) lmaa, j~ e) (9r.Vzowp, V• ) ---- ,o lim (a - 0.0) (jW T -I•, 'h 0

To simplify the evaluation of the diffracted field, the two SDP contours shown in
Fig. 4 of 16] are shifted so as to combine them into a single SDP contour in the
w plane where the saddle point is at w f I4l. The diffracted field can then be
written as

Ud(p' 0) - Urn(Q 2) f 1 [B2(w,0')+sgn(4,)B2(w,#4)] ikpco(w-j~jh)&,
2ri j2

SDP(I.I)
(20)

where the contour SDP(IqI) is from [0-ir/2+iooj to [0+ir/2-iooj. The spectral
functions B2'(w, Oý) can be written in terms of the Maliuzhinets functions and
a summation involving cotangent functions [5]

,_.,. 2n 1
-'w(, 0') i= l (,im) -0')w(T ~ z : B 2e(w ,A#1 9 , e 3 4 =,BE W ? e to ta1 - L i

"-• IB21(w,4) = lrn B2*(w, (21)

w h ere Bs)B 
)(

fori=l (22) I

I
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and
I .4.A(w, 0%, v., ,) = C(v., v.) - C2(8,., v.) [in(4l/n) - sin(w/n)]

+ in(4'/n) sin(w/n)

i C1(a,., V.) = (-2v.) Co. (r- 2v) _ 2

I2P, - coo-(NNa - Co (14r) (23)
=2 sin (*-)

Note that in (21) the expression for Bq(w,#', v,.) for the TE, cawe is obtained
from the previous expression for B•(w,4',v,,,,) for the TMz case with &,e,,
replaced by vih.. The limit in (21) should be taken taking into account that
,.(a) = O{exp i!O) as 11,Iml -- oo. The integral given in (20) can now be
evaluated asymptotically using the Van der Waarden method [7). The function
B2(w, #') is an analytic function except for some real and complex simple poles.
The real poles arise from the cotangent functions which correspond to the G.O.
poles and are located at wl = w - #, w'2 = -* + #., w3 = -#' + (2n - 1)w,
w4 = -w3 and w5 = -0.' _ (2n - 1)w. The complex pole which is closest
to the saddle point comes from the function *(,r - w, va, v.) and occurs at
w6 = -vw - w. This pole corresponds to a surface wave traveling away from
the edge along the wedge face.

The asymptotic evaluation of (20) yields (1#1 :5 nr; 0 _95 #t 5 nr) for large kp
• ikp rUrd(O,P) ~iM er'•=)p D(#,)

YM 2~)]

where the diffraction coefficient is given by

I ~D(4,4) = ei/ 1 B2"(101, 4.') + Sgn(4.)'JB2(I4, 4.)(25)
The residues, rl, are determined by

,'l =,.lim WI-,.,) (2!B(w, 0) + sp(#)!B2(w,,• (26)

and 
181 •= v2eiYl•A •( (27)

where &at is a pole and T(z) is the well known transition function given by
00

Y(z) = 2ivene" e e-it dt ; -3r/2 < arg(z) < r/2 (28)

O
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Due to the presence of the square root function '(i, a branch cut is introduced
in the x-plane so that F(z) will be a single valued function. Therefore, the
argument of z is restricted to the interval indicated.

II.C Shadow Boundaries for 0.0. Fields

For the interior wedge shown in Fig. 3 for which • n < 1, where one
of its faces can transmit electromagnetic fields, there will be numerous shadow
boundaries due to reflections from and transmission through the wedge faces. The
location of a shadow boundary corresponds to the point at which a G.O. pole is
captured by the contour shown in Fig. 4 of [6]. Note that IS.B. will denote an
incident shadow boundary, RnS.B. a single reflection shadow boundary from face
n, and R.,mS.B. a double reflection shadow boundary from face n to face m.
The resulting location of the shadow boundaries is shown in Fig. 3 for a wedge
angle nw. It is observed that for the shadow boundary R 2 , the field is first
reflected by face 2 and transmitted by face 1, while for the R3 S.B., the field is
first transmitted by face I and then reflected by face 3.

$ .9. ~.cyis, sum ass ine

I • s.s. Izzmzsas oea

R, S.D.1 ~s.4

S~~~s, ua s.s.I.2a..1IW-*

Sea af S1282. 10a a-1

;3 .9.. -M•S/ Cv I

Figure 3. Shadow boundaries for an interior wedge with face 1 able to
transmit EM fields. Note that -nw : 5 nw and 0 _< I
fnlr. I

I
I



*

I Diflratin by a Strip Attack toa Wakme 383

IID Results for Resistive Sheet to Wedge Junction

Now the bistatic scattering from the PEC wedge, resistive sheet configuration
shown in Fig. 3 with n = 0.75 and p = 2A• will be examined. For this case the

incident field is TM,, and the incidence angle is 120°. For this incidence angle,
there are four shadow boundaries and they are located at -60* , -300, 300,
and 60". A plot of the total field, an well as the G.O. and diffracted fields, is
shown in Fig. 4(a). Here it is clearly seen how the diffracted field compensates for
the discontinuities that occur in the G.O. field at the shadow boundaries which
results in a continuous total field.

l 5am/ rMU&N

"a.*-. r ,&.
Dr ramb~

(a)

In
I 'I

I I

IU! -
* (b)

Figure 4. Bistatic scattering for an incident TM, field for the configura-
tion of Fig. 2 where Re = 150 fl, n = 0.75 and p = 2A. (a)

= 1200. (b) 30.I
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Next, the same configuration but for an incidence angle of 300 will be ex-

amined. In this case there are three shadow boundaries and the incident field
penetrates the resistive sheet and reflects from the lower wedge face resulting in
a shadow boundary at 0 = -120* (see Fig. 3(c)). The corresponding field plot
is shown in Fig. 4(b) for the diffracted, G.O., and total fields. As in the previous
case, the diffracted field compensates the G.O. field at the shadow boundaries
including the one at -= -1200, indicating that the solution is valid in the region I
0 <0.

IL.E Two-part Resistive Half Plane Problem

The second canonical problem to be solved is the diffraction from the point Q1
in Fig. I with L -- co, i.e., the half plane problem. However, the more general
problem of scattering from the planar junction at Qi between two semi-infinite I
resistive strips as shown in Fig. 2(a) with L -, oo (where L is the length of the

resistive strip Ra), will be considered first. The solution for the resistive half
plane by itself with its edge at Q1, can be obtained by letting the value of Re
go to infinity. This two-part problem was obtained previously by H. C. Ly [8]
and Rojas, et al. [9,10]. However, for determining multiple diffraction between a
resistive card junction and the impedance wedge junction, it is more convenient to
have the spectral solution for the resistive card junction in terms of the solution
of the impedance wedge junction. Another reason for considering this problem is
to show that it can also be obtained by a proper combination of the well known
Maliuzhinets wedge solution. To accomplish this, the even and odd mode analysis
shown in Fig. 2 is used. The solution can now be obtained from the superposition
of the even and odd mode solutions for an impedance wedge with an interior
wedge angle of w (n = 1). It is worth noting that since Zb = 0 for the TMz odd
case and the TE, even case (see Fig. 2(b)), there is a diffracted field contribution
only for the TMz even case and for the TE, odd case. The other two cases
only contribute G.O. fields. Simplifying the spectral function defined in (21)
with n = 1, the following spectral function for the two-part resistive geometry
of Fig. 2(a) is obtained, where the resistive strip R& is assumed to be infinitely
long,
BTM,TE(w, B• ) , 0)

,k(f)(sinva -sinh )sinwsin44
qeh e7 e (29)

=~~ -• W, &,a

where the origin of the coordinate system is Q1 and the angles 41 and el are
measured from the face of the Ra resistive strip. The total field can then be
written as follows I

uTMTE(pl, 0,) -=- U 'C(QI) I B"O,(w, 01) ekP c"s(i-1i 1) ~dw
SDP(IJ# I)

I

+ U~~E~p,~1)(30

I
I
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The geometrical optics f.ld is given by

f 4 ,TE(P1, #0 - Ui"(Ph #1 )S(#1 ) + 6'Ui"Q 1 )

- PAr, 44a) - sgn(#iX1 Air - I-01I - A
+ [r(#i', 4'4) - sgp(#i)C] S(OI I + Al - ))

. C -API 4*,(l I+A) (31)

where pl is the distance from Q1 to the point of observation and

6 -1TEzcanewith 01 < 0 C-{l for TM5  (32)I oterwie -1for TE5
This spectral function can now be used in conjunction with the spectral function
obtained in (21) to obtain the multiple diffraction coefficients.

I. MULTIPLE Di]FRACTION

Once the limit Re --# oo is taken in (29) and (30), the two single diffraction
coefficients for Q1 and Q2 in Fig. I are obtained. In addition to these single
diffraction terms, there is also multiple diffraction that can occur between Q1 and

Q2. For this analysis, the double and triple diffraction terms which are shown in
Fig. 5 are being considered.

DOUBLE DIFFIRACTION TRIPLE DIFFRACTION

-. 2 - -------

R& 1 Ra <0 2 Z

Figure 5. Multiple diffraction between wedge tip Q2 and resistive strip
edge Q1.
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Since the field which is diffracted from the first diffraction point is in general not
ray optical at the second point of diffraction, the multiple diffraction coefficient
cannot be obtained by successive application of the singe diffraction coefficient. I
Instead, the spectrally extended ray technique developed by Tiberio and Kouy-
oumjian [11,12,13J is used. In this method, the field which is diffracted from the
first diffraction point is expanded into a spectrum of plane waves and each plane
wave component is multiplied by the diffraction coefficient of the second point of
diffraction. The spectral integral is then evaluated asymptotically which yields
the correct multiple diffraction coefficient. 3
UILA Evaluation of Doubly Diffracted Field

The configuration which is used to solve for the doubly diffracted field is shown
in Figs. 5(a),(c). For a field incident on Q I with incidence angle 46', its scattered I
field can be represented by a spectrum of plane waves with complex scattering
angle w. Next, this scattered spectral component is considered to be incident
on Q2 with incidence angle -w and scatters with an angle of 0. The far-zone
doubly diffracted field can now be written as a spectral integral with the SDP
passing through the origin, namely

W e i"( l)l/4(p) i ,o , , kL ca(,w)I
U412(0, 04)= 8=ir2v ' Bv" ODIB2 ( w)e

SDP(O) (33) 3
where f(y) = exp (ilk)/Vy. The contour SDP(O) is from [-i + iooJ to -

ioo] and the superscripts "v" and "o" correspond to the TMz and TEz cases,
respectively. The integral given by (33) is now evaluated asymptotically by first
mapping into the u-plane, where u = V2'exp(iw/4) sin(w/2) and then using the
modified Pauli-Clemmow method. The resulting doubly diffracted field can be
written as follows - I
where the double diffraction coefficient is given by

D12 1~) [i 01(j) 08(j) u2 min(e /2)(1 + co

" 16wkn2 01(-Oý + + :) •(-• + - v:)

02~&(l + ~ (Tr, l

2 2

• • _i~j,g,,)z__• " ( -1 UL)~Y 1 Y•,:•(t&4)1)
•_u yj(iikl),2

I
I

km , P.[
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2 ('*,#) 2 (-+0 +) Yi,# + - &A, ) '.1, +(v )

2 (N2 ~-G ( 4 I

+E A(e1 qIOv,,,cc (I2 )FY (35)

and
S]-1

L= ,m(n=(

The poles in the u-plane are then tabulated accordinly;
,,1 = 2 /ji-,/4,C[1 41 - ,r]/2)

I2 = ,/-uf/4 sin([(2n - 1)k - 141]/2)
U3 = (-2jl/ 4 sinC[(2n - 1) + 11]/2) (3)

(( 2)

U4 = 2._ 4 s.i([ ( 37/))

Ul = v•/-i/ 4 sin([_-]/2)

U 2 =•&,/4 si([(42 - 1)v - I1.]/2)

The indices used in the summation and product terms of (35) are defined in
Table I for U = I#I. using reciprocity, the doubly diffracted field U21(01,0')
from Q2 to Qi is given in (34) with Q1, p and D12(0, el) replaced by Q2, PI
and D21(01,40), respectively, where

D2=(01, 0') = D12(*, ,,) (39)

_ _ _M k.,,,_m = 1,M) N pa (n = 1,,N)
11 <2ir2n-1) 1 2 3 2,4,5:2 _>2r2n - 1) 2 2, 6 4 2 ,5

2 0 <2r(1-n) 2 1,3 4 1,3,4,5
2 8 2Ž2vr( - n) 1 1 3 1,4,5

Ta1ble 1. Indices used to identify cox.sponding poles in the u-plane.
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1II.B Triple Diffraction

Here, the far-zone fields which are triply diffracted from Q1 and from Q2 (see
Fig. 5(b),(d)) are determined. The spectral representation for the field diffracted
from Q1 in given by

6U'¶cQ)(L),) JB (Ii, )D TE(w,#~

SDP(O)

whr.eTS, ,ekLcww& 
(40)

where DiMs'(w, •) is the double diffraction coefficient for the field incident on

Qi with incidence angle # and diffracted from Q2 with a complex scattering
angle w, and Bl"(I1iI, -w) is the spectral function for the field incident on Q1
with incidence angle -w and diffracted with angle #1 (B1 for TM, and BfI
for TE,). Likewise, one gets the following for the field triply diffracted from Q2

(Ui' .(Q )f(L) J B;.'(I,0I,"-_) D>TITE(w,) I
SDP(O)

. €iLmw & (41) 5
The asymptotic evaluation of (40) and (41) are conducted in the same manner
as for the double diffraction caae. For the evaluation of the diffraction coefficient
fr-om point Q1, the poles arise from the single diffraction term fr-om Q1, givenI
by the term BI" 0(I0iI, -- ) in (40). The resulting triply diffracted field from Q1

is
w el21(01 , 0) ~-U m (Ql) D•21(0i, 1) f(PI) f 2(L) (42) I

where

D? T- 6, 6Vc'2eir/4 08(I),,(f ) n coe4(nir) sin(#)/2) sin(IqiI/2)
121 8n3(irk) 3/2 014( + q.) 2(y, t.,o.) i(_II + f +'4) I

(1 + cos )2AD(#4 ) &T(Ii I)•bi(-I~iI + 4 -'4) •i(-44 +• +'4)4x(-• + 4j - ,•)I

s~iv,..) cqc2 (Q) cot (_)+ 2cot (M)

-W24-v, V.) CsC2 (n 2n )n
'vre/ 4 08 f) 0,8(f)'4 co2(&,A/2

N , Sn3(,rk) 3/2 0,1(-0! + f + ,,t),/,(-• + &.- 0•,),t(f + ,•)

sin OF, sin I1#11 2(,-) AD(op) AT(i,1 I) 3
V'z(-I¢,z + j + ,,€)€z(-I¢,1 + -,

I
I
I
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- [2 cot (-L) - 2Cj(ai' , &.) cac2 (-

-C I(a &,,,) c 6c 2 (i-n) Cot Gn (43)

The term u5 is defined in (38). The function AD(q) is asscitd wth the
double diffraction term while AT(1#11) is associated with the triple diffaction
term. These functions are defined as follows;

S
yP[1 -L D2

2
AT(IYT[ I)=r (ikLun )n=1

YnT n _.1 2T[ f (un M (44)
~tt2[ ]-

m=- l,m# n

For the function AD(1), there are three poles in the u-plane which came from
the evaluation of the double diffraction term DV'(w, ••) in (40) and they are
given by

UD = eiu/4 n([p - 7r]/2)

UD2 = v/2e'/ 4 sin([2n - Ir/2) (45)

3= vie'/ 4 min([-.a.]/2)

For the term AT(10l), the two poles from B"'(JiI,- -w) are being included,
namely

uT =v N&"/4 smi([lI -w]/2)1 = 
(46)/' s(n-veJ12)

The evaluation of the field triply diffracted from junction Q2 is slightly more
complicated because the poles arise from the term B2'°(I1I,-w) in (41), which is
the single diffraction from the wedge-resistive strip junction. This term has more
poles than the single diffraction term from point Q1. Thus, the triply diffracted
field U4 2(0, 0') from Q2 is given by (42) with Qi, pI and D121(0I,0), re-
placed by Q2, p and D212(0, '), respectively, where
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_6V2-eiw4 .04(v , )0,h16(jr•U4_

=E2 0 512n 4(irk) 3/2 ,I'(Pf _ 0'a,i')V.,(vs. 1

(I + COSY,-) t(v:*/2) 2 2

I4z +j *2(ifI e, V.V) L ejAf'(#') LejAjT(101)3Iv +wJ=l j=1

6i%•eitl/4o 4,v) o,86() r4

D2 25,0 6 n4(irk)3/2 *( - - 0,I - US~ ~,~ & 2 aA /2
12 2

"04{•. 2 Pf • , V.I, V.4()~ + =1 j=1

Again, the term u5 is defined in (38). The function Af(#,) is associated with

the double diffraction term while AT(I•I) is associated with the triple diffraction

term. These functions are defined as follows:

Al() = _U_ 2)
m=l u n=lU"

YA= (UP -, ) [5 (fu•- - (48)

where a = D and 6 =i' for the double diffraction term, a = T and • = 3
for the triple diffraction term, and Gj(#) is defined in (36). The poles for the

double diffraction term Aj)(O') are

UD = v-e"v/ sin([' - :]/2) U
2 = VNe"/ 4 sin(((2n - 1)w - 41J/2)

u3 = "2 'r/4 sin([(2n - 1)w + 01]/2) (49) 3
UD = _/-eVi/ 4

5 I
uf = "2 'eA/ sin([(4n - 1), - #']/2)

The indices used in the summation and product for the term AP(#') are defined

in Table 1 for j5=q$'. Similarly, the poles for the triple diffraction term AT(I#I)

I
I
I
I
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U7 = V2-/'e,4 .in•(•l - i.]/2)1e u= v&e"/ sin([(2, - 1): -I1012)
4l = Vie' sin(R2n - 1)w + I•U/2) (50)

u74 = V2e' 1 4sin([-.vJ/2)

4 = Ve"'14 s([(4n - 1)r - 100/2)
The indices used in the summation and product for the term AJT(I#I) are defined
in Table 2.

1 101M k..(m=_,M N N____ ,N

1 01 ~< 2w(2n -1 1 2 2 2,5
1 102! 2(2n - 1I 2 2,6 I 3 2,5,6

2 < 2 r J1-n) 2 1,3 3 j 1,3,5
2 __e 2w(1- n) - 1 2 1,5

Table 2. Indices used to identify corresponding poles in the u-plane for
the term AJT(I*I).

III.C Relection from Wedge Faces

In addition to the multiple diffraction between the resistive half plane edge
Q1 and the resistive card-wedge junction Q2, the fields can also reflect from
the wedge faces. The incident ray can first reflect from the wedge face and then
diffract from the resistive half plane edge Q1 and vice versa. Figure 6 shows the
various diffraction and reflection mechanisms that were included in this analysis.

The field which is singly diffracted from Q 1 can then reflect from the wedge
face and vice versa (Fig. 6(a)). The incident field can also reflect from the wedge
face first then diffract from Q 1 then reflect again (Fig. 6(b)). Finally, the field
can doubly diffract from Q2 to Qi and then reflect (Fig. 6(c)) and vice versa
The reflected field is obtained by multiplying the field by the appropriate FPesnel
reflection coefficient when it reflects from the wedge face. The Fresnel reflection
coefficient, r(*',v), is defined in (17) where 0' is the angle between the ray
and the wedge face and sin v is defined in (9). Reflections from the wedge face

introduce shadow boundaries into the scattered field. The total field at these
shadow boundaries is then compensated for by the appropriate multiple diffraction
term.

I fHI.D Double Diffraction Compensation for Shadow Boundary of Single
Diffraction Term

For the c=fguration shown in Fig. 7, where the faces of the wedge are PECs,
it is ammned that n- =.6, s = 1000fl, and L = I A. It is of interest to examine
the badcscattered case for a TMx field which is singly diffracted from Ql and
reflected from the wedge face as well an the field which is reflected from the wedge
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face and diffracted from Qi. This field has a shadow boundary at #1 = 1440
as shown in Fig. 8. Also shown in Fig. 8 is the field which is doubly diIfracted

from Qi to Q2 and from Q2 to QI. The doubly diffracted field exhibits a
slope discontinuity at the shadow boundary which is due to the G.O. pole w = I
-(2n-1)i+1I0 (where 0 = v-01) crossing the saddle point when 0 = (2n-1)7.

This slope discontinuity in the diffracted field compensates the diffracted-reflected
and the reflected-diffracted fiel4s at the shadow boundary resulting in a total field
which is uniform across the shadow boundary.

(a) SINGLE DIFFRACTION,I
SINGLE REFLECTION

II

I
(b) DOUBLE REFLECTION,

SINGLE DIFF RAC TION

I

7 R&

(c) DOUBLE DIFFRAkCTION,
SINGLE REFLECTION3

Figure a. Diffracted-reflected and reflected-diffracted fields.



DW tionei~ by a Strip Attswd to a Weaie 393

* Q2

* PE

3 ~Figure 7. Backscatter ray paths for singly diffracted field reflecting from
wedge face, reflected field diffraced from edge Q1, and double3 diffracted field.

20

I -20

-60

72 2 112 132 152 172 =10 n

Figure A. TM3 backacatter singly &nd doubly diffracted fields correspond-

L = IA.
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I.E Triple Diffraction Compensation for Shadow Boundary of Double
Diffraction Term

Considering the same configuration from the previous example, the bistatic case
shown in Fig. 9 will now be examined. Here a field with incidence angle el = 10
is considered which is doubly diffracted from Q2 to Q1 and then reflected from
the wedge face with a shadow boundary at 11 = 144*. Also included in the
analysis is the field which is incident at 0 = 1000 and triply diffracted from Q2. I
A plot of both of these components as well as the total field is shown in Fig. 9.
As was the case in the previous example, the slope discontinuity in the triply
diffracted field compensates the doubly diffracted-reflected field at the shadow.
boundary.

ILIF Surface Wave Fields

As noted in Section II, the faces of the wedge can support surface wave fields,
whereas, the resistive strip cannot because Ra is real while Z. can be complex.
The surface wave fields are excited by the fields incident on the resistive strip. I
wedge junction (Q2) and travel along both faces of the wedge. In (18), the surface
wave fields excited by the incident field of (5) are given. However, additional sur-
face waves are excited by the multiple diffracted fields incident at Q2. Therefore,
the total surface wave field is the superposition of all these surface wave compo-
nents. Since the far-zone fields awe of interest in this paper, the surface wave fields
are not important, except on the faces of the wedge (# = 4-nw) for the lossless
case (Z purely imaginary). Thus, they are neglected in the present analysis.

-40

- Oiboo m. +TMi DimRAcMzaI 3
SDOOMZ, DlWFIVAt, I&ONtOM= I

S TRIMD DIF'ItAWTION

I I

i"° I
-100 I

01•'2 92 112 132 152 172

Figure 0. TMt bistatic doubly diffracted-reflected and triply diffracted
fields with 0! = 100, Ra = lOOfl and L = 1A.

i
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IV. RESULTS

To verify the solutions developed in the previous sections, a comparison was made
with a moment method solution 115]. Since this moment method solution is for
a resistive card attached to a semi-infinite PEC half plane, only the limiting case
of the present UTD solution for a wedge angle n = I can be checked. The
configuration that was used is shown in Fig. 1, for which the incident field is TMs
or TEz, n = 1, Zw = 0 and where the backscattered field is ben considered.
For the TM, case, Re = 500M, and for the TE& can, Re = q,2/(4 x 500)1.
Since the scattered field is a function of sin v of (9), consider the values of sin Y
in the three regions of the configuration: free-space (air), resistive card (Ra),
and PEC half plane (PEC). For the TM, case, the values for sin V are 0 (air),
% ./1000 (R•), and oo (PEC), while for the TE, cae, the values for sin tA are
co (air), qo/000 (Re), and 0 (PEC). Therefore the TMz and TEz cases are
minror images of each other. The results are given in Fig. 10, and they show
excellent agreement between the TMx moment method and UTD solutions. As
expected, the TE, UTD solution is a mirror image (with respect to 90°) of the
TM3 solution.1

20

I0

I -$
8-40

MD (?Z 2)

-so 1T ?z
0 45 90 135 Ig0

Figure 10. TM3 (Ra = 500M), and TEz (RA = 70.94A) backscatter
echo width for UTD vs. moment method solution for the con-
figuration shown in Fig. 1 with n= 1, Z2 =0, and L I,1A.
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An efficient method for numerically computing the Maliuzhinets functions de-

fined in (8) was obtained from the following relation developed by Bernard [14]
in which the function is expressed as a product of Gamma functions over a finite I
number of terms with a remainder that can be expressed as an integral

,=I r2 (I + + [ + +il /i,,
(-I)NIC-V(-I)'~ 3 oho)

exp (I (51)

Since the integral is rapidly convergent due to the exponential term in the in- I
tegrand, the upper limit can be truncated at a reasonable finite value allowing
for efficient numerical evaluation of the integral. Three terms were used in the
product of the Gamma functions and the limits of integration were from 0 to 1. S
The integration was carried out using an 8-point Gaussian integration routine.

The first case that is considered is the backscattered echo width for a PEC
wedge with a one wavelength long resistive strip. The configuration is shown
in Fig. I with a TM, incident field, Zw = 0 and n = O.8. The results are
shown in Fig. 11 for a case with no resistive strip and then for three different
resistance values. Incorporating the resistive strip to the wedge introduces a
specular component to the scattered field which is indicated by the increased echo
width around #1 - 90-. For backscattered angles close to endflre, i.e., for #1 close
to 180°, the effect of the strip is to reduce the echo width of the wedge. The
same configuration is also examined for a TEz incident field (Fig. 12). For this I
case, a PEC wedge with a one wavelength resistive strip of resistance Ra = 100fl
is compared to a PEC wedge alone. The resistive card has little effect at endfire
which is expected since the electric field is normal to the resistive sheet at this
point. However, as in the TMz case, there is a strong reflected field at *41 90°.

For the next case, the same geometry as in Figs. 11 and 12 is considered for a
TMz incident field but the resistance value is held constant at Ra = 100fl while
the length o the strip is varied (Fig. 13). As expected, increasing the length of
the strip increases the specular component around 1 = 90W but also decreases
the echo width n endflre. 3

I
I
I
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IFigure 1.TMx backactter echo width for the wnciguration shown in
Fig. Iwith various vauhes of R, L=1A, Zw 0, and n=

.S.

I 1-25

I36 72 zoo 144 ISO

I ~fiure 12. TEz badmaatter echo width for the codgurnation shown in
Fig. Iwith Re =ulOWf, L= 1A, Z = 0, and n =O.8.
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Figure 13. TM, backwAatter echo width for the configuration shown in
Fig. I with various values of L, Re= 1000l, Zu = 0, and
n = 0.8.

Another case to be considered is the effect of adding an impedance surface to
the wedge faces. The incident field is TM,, n = .8, and the surface impedance is I
Zw = 37.7-i188.50. The backacattered echo width is shown in Fig. 14. Compared

to the PEC wedge, the impedance wedge has a reduced echo width near endfire
by about 4 dB. Incorporating a one wavelength resistive strip of Re = 1000 to
the impedance wedge further reduces the echo width by appmaiely 9 dB. A
bistatic TM, cae is shown in Fig. 15(a) where incident kid is near endfire at
#',= 179.5'. Incaporating the impedance surface and the resistive strip reduces
the echo width throughout the range of observation angles -180° < #1 < -360
and 360 < #1 < 1800. Note that in the angular region enclosed by the wedge,
i.e., -W < #1 < 36W, the kid is exactly sero as pected. The same cae is also
examined for TE, polarization (e Fig. 15(b)). The effect of adding the surfce I
impedance is to cause the field to vanish along the wedge faces, however, it has

almost no effect in the regions -1800 < #1 < -WO and 36O < < 180. These
results also show that the addition of a resistive cad has almost no dect for
the TE, cae. Finally, Fig. 16 shows the TM, backscattered echo width for an
impedance wedge with a resistive card attached to its tip (Fig. 1) for two different
wedge angles. As expected, the fackicattered ild near #i- 180* is decreased
by decreasing the Wnrior wedge angle (increasing n).

I
I
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-25

36 I2 105 144 1C0

Figure 14. TMz backacatter echo width for the configuation shown in

Fig. 1 comparing the efect of adding an impedance surface to
thewedge fae ndthenasresistive strip. Re - 100l, L=

1,n = 0.8, and Zw =- 37.7 - u188.5fl.

-- o

"!•o-ls-soU:o . -o. o

36S 13 9 -7 5 10 40 135 160

#I OM=3)

(a)
Figure 15. Bistatic echo width for the confguuaio n shown inFi. co-

pIming the efect of adding an impedance osuface to the wedge

faces and then a ruistive strip where 100-- I L00, Ln

0.8, Z =0 37.77- 188.5), ad - = 179.5, (a) TMz.



I

400 xaja. e4" Otero

-40

-180 -1' -0 -5 0 5 S 3 8

I

0n iniauw I-130o-135s-Wo -45$ 0l~ 4s N 135 130

(b)

Figure 15. Bistatic echo width for the configuration shown in Fig. 1 com-
paring the effect of adding an impedance surface to the wedge
faces and then a resistive strip where Ra = 100fl, L = I A, n =
0.8, Zw= 37.7 - i188.5A, and 0- -179.50 (b) TEz.

45__ 13__ _ IS

P.•ure me. TMz backK•caer echo width for the cofgrton shown in
Fig. I for two wedge angles with Re ff 1000l, L = IA, andI

S37.7 - MU0.M

A' I
II

olll l l



I
I

i Diffection &V a Strip Atcked toa Wedge 401

V. CONCLUSION

A uniform asymptotic solution for the scattering from an impedance wedge (with
equal impedances on both faces) attached to a resistive strip was presented. Using
an even and odd mode analysis allowed the solution of this problem to be obtained
from the solution of the much simpler configuration of an impedance wedge with
different impedance faces. The incident field is a plane wave either TMx or
TEx and the asymptotic evaluation for the scattered field is valid across the
shadow boundaries. Since there are two points of diffraction, multiple diffraction
between these points up to third order was included in this analysis. Also included
in the &alysis were reflections from the wedge faces of the diffracted fields as
well as fields that are first reflected and then diffracted which introduced shadow
boundaries in the scattered field. Careful accounting of the G.O. poles when
determining the multiple diffraction terms compensated for the presence of these
shadow boundaries.

One of the potential applications for the solutions developed here is that they
can be used as design tools for reducing the echo width of wedge shaped structures.
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